
Best Practice Guides

Dimitris Dellis

GRNET

Athens, 1 Dec. 2017

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 1/25

Outline
▶ Profilers
▶ Examples of profiling in real applications
▶ Best Practice Guides
▶ Hands On on supplied codes or your own code
▶ Discussion

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 2/25

▶ Profiler is software that gets metrics on source execution,
without addition of timers in source code.

▶ Serial Profilers
▶ One can find detailed time spent in code procedures, i.e.
How many times a procedure was called, average time per
call, total time spent in procedure, from which point in
source was called etc.

▶ Standard Unix profiler gprof and its variants, for example
sprof.

▶ Compiler specific profilers, like vtune for Intel compilers or
pgprof for PGI.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 3/25

▶ MPI
▶ mpiP : Traces MPI calls and gives performance indicators,
possible bottlenecks etc. OpenSource, Works with any
compiler and MPI implementation.

▶ MPI implementations profilers, for example OpeMPI
VampirTrace.

▶ Hybrid MPI/OpenMP/Threads Profilers
▶ scalasca : Traces MPI calls, as well as OpenMP calls,
provides detailed information timing information per thread,
task, node, code line. Graphical Interface to explore profile
information.

▶ Other mainly commercial profilers/debuggers, for example
DDT

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 4/25

In Practice
▶ Serial Applications : gprof

▶ At Compile time use the flags : -pg
▶ It is suggested to use -O0 for optimization to avoid any
inlining that may result to missing functions timing.

▶ Example : 00_profiling1.f : Matrix Matrix
Maltiplication.
module load binutils
gcc 00_profiling1.f -pg -O0 -o 00_profiling1.x
./00_profiling1.x
gprof 00_profiling1.x

▶ You’ll se something like

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 5/25

% cumulative self self total
time seconds seconds calls s/call s/call name
100.30 10.82 10.82 1 10.82 10.82 mymm_

0.09 10.83 0.01 1 0.01 0.01 initializearrays_
0.00 10.83 0.00 1 0.00 10.83 MAIN__

▶ In Brief :
▶ mymm is executed 1 times, need 10.82 seconds for each

call, it is the main time consuming procedure.
▶ initializearrays is executed 1 times, need 0.01 secs per call.
▶ Main is executed 1 times, it needs less than 0.005 seconds

to complete.
▶ We have a good estimation where the execution time is

spent. In real serial applications output is more interesting.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 6/25

In Practice
▶ Pure MPI Applications : mpiP
▶ If you compile your application using : mpif90 mycode.f -o
mycode.x
do
module load mpiP
mpif90 mycode.f -g -L$MPIPROOT/lib -lmpiP -lbfd -lunwind -o mycode.x

▶ -g (debug) flag is needed to include source code
information in executable.

▶ If (that is usually the case) you have a makefile to compile,
use in the linking stage mpiP, example :
$LD $(OBJECTFILES) -g -L$MPIPROOT/lib -lmpiP -lbfd -lunwind -o mycode.x

▶ Run it : srun mycode.x in slurm

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 7/25

▶ or mpiexec.hydra -n 8 mycode.x (interactively on login
node with 8 procs)

▶ After completion you’ll find a report file called
mycode.x.NPROCS.PID.mpiP

▶ Have a look in the provided information.
▶ You’ll se something like

@ mpiP
@ Command : ./06.x
@ Version : 3.4.1
@ MPIP Build date : Sep 7 2015, 16:33:51
@ Start time : 2017 11 29 21:45:28
@ Stop time : 2017 11 29 21:45:31
@ Timer Used : PMPI_Wtime
@ MPIP env var : [null]
@ Collector Rank : 0
@ Collector PID : 29284
@ Final Output Dir : .
@ Report generation : Collective
@ MPI Task Assignment : 0 login01

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 8/25

......
@--- MPI Time (seconds) ---

Task AppTime MPITime MPI%

0 2.72 0.7 25.69
1 2.72 1.16 42.52
2 2.72 1.07 39.11
3 2.72 1.06 38.98
4 2.72 1.04 38.24
5 2.72 1.32 48.29

.....
31 2.72 1.13 41.51
* 87.1 34.9 40.05

......
@--- Callsites: 11 --

ID Lev File/Address Line Parent_Funct MPI_Call
1 0 06_md_inhomegeneous_reduce.f 115 md Bcast
2 0 06_md_inhomegeneous_reduce.f 137 md Bcast
3 0 06_md_inhomegeneous_reduce.f 202 md Reduce

.....
@--- Aggregate Time (top twenty, descending, milliseconds) ----------------

Call Site Time App% MPI% COV
Reduce 4 1.27e+04 14.57 36.37 0.94

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 9/25

Barrier 8 1.03e+04 11.78 29.41 1.09
Bcast 6 8.8e+03 10.10 25.22 0.18
......
@--- Aggregate Sent Message Size (top twenty, descending, bytes) ----------

Call Site Count Total Avrg Sent%
Reduce 3 32 3.2e+07 1e+06 11.11
Reduce 4 32 3.2e+07 1e+06 11.11
Reduce 9 32 3.2e+07 1e+06 11.11
Bcast 11 32 3.2e+07 1e+06 11.11
......
@--- Callsite Time statistics (all, milliseconds): 352 --------------------

Name Site Rank Count Max Mean Min App% MPI%
Barrier 8 0 1 0.048 0.048 0.048 0.00 0.01
Barrier 8 1 1 774 774 774 28.42 66.83
Barrier 8 2 1 769 769 769 28.23 72.17

....
and more.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 10/25

In Practice
▶ Hybrid Applications : Scalasca
▶ If you compile your application using : mpif90 mycode.f -o
mycode.x
do
module load binutils qt/5.6.0 cuda/7.5.18
scalasca -instrument mpif90 mycode.f -o mycode.x
scalasca -analyze mpiexec.hydra -n 8 ./mycode.x
scalasca -examine scorep_mycode.x_8_sum

▶ You’ll see something like (You need X11 at your Desktop)
▶ https://sourceforge.net/projects/xming/
▶ If not X11 available, instead of scalasca -examine use :
square -s scorep_mycode.x_8_sum. A report will be in
scorep_mycode.x_8_sum/scorep.score text file.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 11/25

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 12/25

Efficient use I

▶ ARIS compute nodes have 20 or 40 cores. Use if possible
full nodes, i.e. 20/40 cores/node.

▶ If it is not the case, limit the required nodes.

cores Nodes tasks/node Unused cores
64 4 20 16 on 1 node
128 7 20 12 on 1 node
256 13 20 4 on 1 node
512 26 20 8 on 1 node

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 13/25

Efficient use II

▶ Common mistake

cores Nodes tasks/node Unused cores
64 8 8 12 cores/node on 8 nodes=96
64 4 16 4 cores/node on 4 nodes = 16
90 6 15 5 cores/node on 6 nodes = 30
128 8 16 4 cores/node on 8 nodes = 32
480 40 12 8 cores/node on 40 nodes = 320
512 32 16 4 cores/node on 32 nodes = 128

▶ Do not use mpirun/mpiexec nor typical desktop arguments
like -np. It happens to forget to change the really needed
resources, for example :

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 14/25

Efficient use III
#SBATCH --nodes=10
#SBATCH --ntasks=200
mpirun -np 8
or
srun -n 8
You allocate (and charged for) 200 cores while you use
only 8.

▶ Try to use the correct combination of tasks and threads
with Hybrid applications. Check that the
OMP_NUM_THREADS is set. In SLURM script template there
is code that checks for this.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 15/25

Efficient use IV

▶ Surprisingly, this piece of code is frequently removed.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 16/25

Efficient use I

▶ Explore the capabilities of your application. With some
options in input file(s) you may see much better
performance.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 17/25

Efficient use II
▶ Example : WRF quilting

▶ Usually applications have a recipe for number of tasks to
use as function of data details, For example WRF, cores as
f(domain dimensions), MD cores as f(atoms), ab-initio
cores as f(wfns, atoms, etc.)

▶ Direct/Semidirect/Scratch methods/variables in ab-initio
codes.

▶ A highly scalable application may be very inefficient with
your data. For example, namd is highly scalable on many
nodes and many gpus. This does not apply if your system
is small. If your system contains less than 100k atoms, you
should use half node and one (of two) gpus to obtain
efficiency of ∼ 80%.

▶ With hybrid applications, check before production runs the
performance with various combinations tasks/threads.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 18/25

Efficient use
▶ It depends on the algorithm
▶ ..and mainly on data
▶ The same algorithm may exhibit diffierent efficiency with
different data

▶ There are ”gold” rules for algorithms, but :
▶ Measure performance with your data before decision

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 19/25

Efficient use
▶ Example : MD of an inhomogeneous system

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 20/25

Efficient use I

▶ If you can use save/restart and need very long time, use it.
Instead of a job of 10 days, use 10 jobs of 1 day
(propability of a HW failure in 10 days much higher -
especially with multinode runs).

▶ Request from the Resource Manager wall time slightly
higher than the expected. NOT the typical 2 days.

▶ Example : Submit 100 jobs requesting 2 days each.
Scheduler will arrange to run them in ∼ 1 week. If each run
takes 5 minutes, requesting 6 minutes, all runs will finish in
∼ 1 hour instead of ∼ 1 week.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 21/25

Efficient use II

▶ Even better, submit few jobs with multiple srun, for
example 10 jobs with 10 srun.

▶ Stats : Sept. 2017
65% of jobs took up to 5% of requested time
9% between 5 and 10%.
11% more than 50%

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 22/25

Efficient use III
▶ Avoid to use .bashrc. Especially when more than 1
versions of package are available. Use modules instead.
For example, OpenFOAM :
module load openfoam/3.0.1
source $FOAM_BASHRC instead of put in .bashrc all
OpenFOAM variables, specific to a certain version.

▶ Avoid no necessary parameters in input, especially those
that affect load balance, grids, methods etc. if it is possible
to specify them at runtime, for example, NPROC_X/Y in
WRF, processors or pair_style lj/cut/gpu vs
pair_style lj/cut and -sf gpu with LAMMPS.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 23/25

Efficient use IV
▶ Heavy use of scratch : Read from files with rate 12.6
GBytes/sec for 2 days = 2.12 PBytes for a 100 cores job!!.

▶ Changing just one flag, traffic falls to normal

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 24/25

Hands On
▶ Profile Serial, MPI, Hybrid MPI/OpenMP applications with
gprof, mpiP, scalasca.

▶ For those who have their own Code, try to profile your own
code.

▶ Those who are familiar with vtune, try also vtune,
especially with OpenMP only codes.

▶ Discuss Findings, Suggestions to improve performance.

Introduction to Parallel Programming
NTUA, 19 Dec. 2017 25/25

