bofurno 39 mols

Georgian Mathematical Union

Batumi Shota Rustaveli State University

3ొ6\%9ㄲ6(30ป

VIII Annual International Conference of the Georgian Mathematical Union

 BOOK OF ABSTRACTS

Batumi, September 4-8

олддзцмддл

Organizing Committee:

Chairman: Roland Duduchava, Vice-Chair: Tinatin Davitashvili, Scientific Secretary: Medea Tsaava, Members: Tengiz Buchukuri, Guram Gogishvili, Nugzar Kereselidze, Levan Sigua, George Tephnadze, Local organizers: Vladimir Baladze, Anzor Beridze, Ruslan Tsinaridze.

дьщь

Scientific Committee:

Malkhaz Bakuradze, Vladimer Baladze, Otar Chkadua (Chairman), Temur Chilachava, Teimuraz Davitashvili, Roland Duduchava, Guram Gogishvili, Temur Jangveladze, Vakhtang Kvaratskhelia, Alexander Kvinikhidze, Hamlet Meladze, David Natroshvili, Konstantin Pkhakadze, Igor Popov, Omar Purtukhia, Khimuri Rukhaia, Nugzar Shavlakadze, Vaja Tarieladze, Shaqro Tetunashvili, Temur Vepkhvadze.

Editors: Guram Gogishvili, Maia Kvinikadze, Maia Japoshvili
Cover Design: David Sulakvelidze

Contents

In Memoriam - blmagb 25
 25
Professor Revaz Absava - 70 28
Abstracts of Plenary and Invited Speakers 31
 31
Vladimer Baladze, Anzor Beridze, Ruslan Tsinaridze, On Algebraic and Geometric Properties of Continuous Maps and Applications 33
 33
Otar Chkadua, Mixed and Crack Type Dynamical Problems of the Ther- mopiezoelectricity Theory Without Energy Dissipation 34
 34
Roland Duduchava, Medea Tsaava, Mixed Boundary Value Problems for the Laplace-Beltrami Equation 35
 35
Vakhtang Gogokhia, Gergely Gábor Barnaföldi, The Dynamical Struc- ture of the QCD Ground State 36
 36
Alexander E. Guterman, Matrix Centralizers and Their Applications 37
 дддठо 37
Gennadiy A. Kalyabin, On Caveney-Nicolas-Sondow Hypothesis for Gron- wall Numbers 38
 $39^{\text {dobluongols }}$ 38
Estate Khmaladze, Fold-up Derivatives of Set-Valued Functions: Its Defini- tion and Applications 39
 39
Vakhtang Kokilashvili, Extrapolation, Singular Integrals, Applications to the BVPs 41
 41
Yusuf Abu Muhanna, Harmonic Univalent Maps and Pseudo-Hyperbolic Dis- tance 41
оך 41
Vaja Tarieladze, Stefan Banach and Georgia (On the occasion of Stefan Ba- nach's 125-th Birthday Anniversary) 42
 42
George Tephnadze, Convergence and Summability of Vilenkin-Fourier Series in the Martingale Hardy Spaces 43
 43
Shakro Tetunashvili, On Universal Series of Functions 44
 44
Nodari Vakhania, Some Deterministic and Stochastic Estimations for Mea- suring Efficiency of Algorithms 44
 44
Abstracts of Participants' Talks 47
 47
Akbar B. Aliev, Gunay I. Yusifova, On the Nonexistence of Global Solu- tions of Cauchy Problem for a Class of System of Nonlinear Hyperbolic Equations with Positive Initial Energy 49
 49
Bahram A. Aliev, Solvability of a Boundary Value Problem for Second Order Elliptic Differential-Operator Equations 50
 50
Ziyatkhan Seyfaddin Aliyev, Rada Alirza Huseynova, Global Bifurcation in Some Nonlinearizable Eigenvalue Problems with Indefinite Weight 51
 51
Ziyatkhan Seyfaddin Aliyev, Nazim Bakhish Kerimov, Spectral Proper- ties for the Equation of Vibrating Rod on Right End of which an Inertial Load is Concentrated 53
 53
Sertan Alkan, Kenan Yildirim, A Collocation Method for Solving Fractional Bratu-Type Equation 54
 54
Sertan Alkan, Kenan Yildirim, Solving a System of Nonlinear Fractional Integro-Differential Equations 54
 54
Mikheil Amaglobeli, Nilpotent Exponential MR-Groups 55
 55
 56
Amiran Ambroladze, A Discussion about Multiple Choice Tests 56
Malkhaz Ashordia, Nino Topuridze, On the H-Wellposedness of the Sin- gular Cauchy Problem for Systems of Linear Generalized Differential Equa- tions 56
 56
Lydia Außenhofer, On Compatible Group Topologies on LCA Groups 58
 चglusbod 58
Mahin Azizi karachi, Alireza Fakharzadeh, Esmail Hesameddini, Ana- lysing Drug Therapy on the Interaction Between Tumor and Immune Cells Based on Fractional Differential Equations, and Optimal Control Theory 58
 58
Petre Babilua, Elizbar Nadaraya, On Deviations Between Kernel Type Es- timators of a Distribution Density in $p \geq 2$ Independent Samples 60
 60
Petre Babilua, Mzevinar Patsatsia, Inquiry-Based Teaching in Mathematics 61
 O̊லృд๐ 61
Giorgi Baghaturia, Marina Menteshashvili, Non-Linear Versions of Char- acteristic Problems for the Second Order PDEs of Mixed Type 62
 62
Malkhaz Bakuradze, On Addition Formulas Related to Elliptic Genera 63
 63
Vladimer Baladze, Zviad Giorgadze, On Axiomatic Characterization of Bifunctor Homology Theory in the sense of Hu 63
 63
G. Barsegian, Initiating a New Trend in Complex Equations Studying Solu- tions in a Given Domain: Problems, Approaches, Results 64
 64
Svetlana M. Bauer, Stanislava V. Kashtanova, Nikita F. Morozov, The Influence of the Inclusion on the Buckling Plate 65
 65
Sadi Bayramov, Cigdem Gunduz Aras, Vefa Cafarli, Soft Countable Topological Spaces 66
 66
Levon A. Beklaryan, Questions of Existence of Periodic Solutions for Func- tional-Differential Equations of Pointwise Type 67
 67
Shalva Beriashvili, Triangulation of Polyhedra and Their Applications 68
 68
Anzor Beridze, Leonard Mdzinarishvili, On the Axiomatic Systems of Steenrod Homology Theory of Compact Spaces 69
 69
 70
Yuri Bezhuashvili, The Fourier Method in Three-Dimensional Dynamical Problems of the Hemitropic Theory of Elasticity 70
Çiğdem Biçer, Celil Nebiyev, Completely \oplus-Supplemented Lattices 70
 70
Anriette Bishara, An Ontology Model for a Tourism Web Portal 71
 71
Lamara Bitsadze, On the Solutions of Elastic Materials with Voids 72
 72
Rusudan Bitsadze, Simon Bitsadze, The Cauchy Problem for the Equation Describing Hydrodynamic Processes in Magnetohydraulic Pusher 72
 72
Mamuli Butchukhishvili, System of Mathematical Tasks Solving by Using the Method of Area 73
 73
Ali Cakmak, Semra Yurttancikmaz, Sezai Kiziltug, Osculating Direc- tional Curves of Non-Lightlike Curves in Minkowski 3-Space 73
 73
Maia Chakaberia, Computer Modeling of Process of Two-Level Assimilation 74
 向gठठ 74
Temur Chilachava, Mathematical Model of Information Warfare with System of Linear Partial Differential Equations 75
 75
Temur Chilachava, Nonlinear Mathematical Model of Transformation of Two- Party Elections to Three-Party Elections 76
 76
Temur Chilachava, Tsira Gvinjilia, Mathematical Model of Interference of Fundamental and Applied Researches 77
 77
Temur Chilachava, Tsira Gvinjilia, Nonlinear Two or Three-Stage Mathe- matical Model of Training of Scientists 77
 77
Teimuraz Davitashvili, Simulation and Analysis of Some Non-Ordinary At- mosphere Processes by WRF Model Based on the GRID Technologies 78
 78
Tinatin Davitashvili, Hamlet Meladze, About Nonlocal Contact Problems 79
 obls dglsubg 79
Manana Deisadze, Vladimer Adeishvili, Some Issues of Data Sufficiency about Solving the Problem 80
 80
Manana Deisadze, Shalva Kirtadze, Some Issues of Teaching Division with Remainder in School Math Course 80
 80
Giorgi Dekanoidze, The Boundary Value Problem for Some Class of Second Order Hyperbolic Systems 81
 81
Mzia Diasamidze, Irma Takidze, Scintillation Effects and the Spatial Power Spectrum of Scattered Radio Waves in the Ionospheric F Region 81
 81
Besarion Dochviri, Vakhtang Jaoshvili, Zaza Khechinashvili, On One Problem of Reduction 82
 82
Besik Dundua, Temur Kutsia, Solving Matching Equations in Variadic Equational Theories 83
 83
Omar Dzagnidze, Irma Tsivtsivadze, On the Summability of One-Dimensio- nal Associated Fourier Series 84
 84
Tsiala Dzidziguri, On Teaching of Mathematics to the Students of Natural Sciences 84
 84
Goderdzi Ekhvaia, Nato Kharshiladze, On the H-Wellposedness of the Singular Cauchy Problem for Systems of Linear Impulsive Differential Equations 85
 चglubg 85
Vedat Suat Erturk, Optimal Variational Iteration Approximation of a Fourth- Order Boundary Value Problem 86
 86
A. Fakharzadeh J., M. Goodarzi, Measure Theoretical Approach for Solving 3-D Optimal Shape Design Problems in Spherical Coordinates 87
 87
 88
Genadi Fedulov, Giorgi Iashvili, Nugzar Iashvili, Fast Algorithms of Fin- ding the Boundaries of Objective Function 88
Ágota Figula, Péter T. Nagy, Simply Connected Nilmanifolds 89
 89
N. Fokina, E. Khalvashi, M. Elizbarashvili, Dynamics of the Electron Spins $S=1$ with the Zero-Field Level Splitting in the Molecular Crystals in a Strong Constant Field 90
 90
Roland Gachechiladze, Boundary Contact Problems for Hemitropic Elastic Solids with Friction 91
 lbyymolsumgols bubyбols zumzumolforgadoon 91
T. S. Gadjiev, T. Maharramova, The Solutions of Stochastic Differential Equations Connected with Nonlinear Elliptic Equations 91
 91
Giorgi Geladze, Manana Tevdoradze, Numerical Model of a Mesoscale Boundary Layer of the Atmosphere and Some Processes Proceeding in It 92
 92
Ashot Gevorkyan, The Classical Three-Body Problem without Environment and with It. New Ideas and Approaches in the Theory of Dynamical Systems 92
 92
Teimuraz Giorgadze, Diagram Using Some Practical Aspects 93
 93
Levan Giorgashvili, Aslan Djagmaidze, Maia Kharashvili, Problem of Statics of the Linear Thermoelasticity of the Microstretch Materials with Microtemperatures for a Half-Space 94
 94
Levan Giorgashvili, Shota Zazashvili, Boundary Value Problems of statics of Thermoelasticity of Bodies with Microstructure and Microtemperatures 94
 94
George Giorgobiani, Jimsher Giorgobiani, Mziana Nachkebia, Energy Control Issues 95
 95
Guram Gogishvili, On the Theoretical and Applied Aspects of the Generating Functions' Method in Discrete Math Learning Courses 96
 96
Vakhtang Gogokhia, Avtandil Shurgaia, Periodic Field Configurations in a Theory of Scalar Fields and Phase Transitions 97
 97
Vladimir Gol'dshtein, Spectral Estimates for the Laplace and p-Laplace Neu- mann Operators in Space Domains 97
 97
Bakur Gulua, Roman Janjgava, Boundary Value Problems for a Circular Ring with Triple-Porosity in the Case of an Elastic Cosserat Medium 98
 98
David Gulua, Jemal Rogava, Using a Small Parameter Method for Splitting of the Multi-Level Semi-Discrete Scheme for the Evolutionary Equation 99
 99
Ekaterine Gulua, Perturbation Algorithm for Numerical Realization of Dif- ference Scheme of Parabolic Equation 100
 100
Cigdem Gunduz Aras, An Overwiev Intuitionistic Fuzzy Soft Supratopolog- ical Spaces 100
 додmbom $3{ }^{\text {b }}$ 100
Cigdem Gunduz Aras, Sadi Bayramov, Separation Axioms in Supra Soft Bitopological Spaces 101
 101
Osman Gürsoy, Muhsin Incesu, On the Integral Invariants of Line Geo- metry 102
 ตosbo̊9 ${ }^{\text {on }}$ 102
Anahit V. Harutyunyan, George Marinescu, Bounded Operators on Wei- ghted Besov Spaces of Holomorphic Functions on Polydiscs 103
 103
Hrachik Hayrapetyan, On a Boundary Value Problem with Infinite Index 104
 дglsubgठ 104
 105
Georgi Iashvili, Nugzar Iashvili, About Necessity of Use of Information Technologies in Agriculture 105
 106
Nugzar Iashvili, Structure of an Automatic Control System of Industrial Transport of the Mining and Enriching Enterprises 106
 107
Nugzar Iashvili, Giorgi Iashvili, Mathematical Model of the Functioning of Microprocessor Measuring 107
 108
Levan Imnaishvili, George Iashvili, Maguli Bedineishvili, Application of Biometric Parameters for a Person Identification 108
Safar Irandoust-Pakchin, PDE Based Method for Image Enhancing and Im- age Restoration 109
 ongol 109
Sevcan Işikay, Ayten Pekin, On the Yokoi's Invariant Value of Certain Real Quadratic Fields with the Period Eight 109
 109
Diana Ivanidze, Marekh Ivanidze, The Boundary-Transmission Problem of Statics 110
 110
Roman Janjgava, A Problem of Plane Asymmetric Elasticity for a Perforated Rectangular Domain 111
 111
Vagner Sh. Jikia, The Beta Function, New Properties and Applications 112
 112
Vagner Jikia, Ilia Lomidze, The Special Functions, the New Relations 113
 113
Nikoloz Kachakhidze, Zviad Tsiklauri, About One Method of Solution of Elliptic Kirchhoff Type Equation 114
 114
Liana Karalashvili, Line and Grid Composed Methods 115
 дуомщо 115
Tariel Kemoklidze, On One Family of Separable Primary Groups 116
(ึ) dglobgo 116
Tariel Kemoklidze, Irakli Japaridze, On the Cotorsion Hulls in the Class of Primary Groups 116
 116
Nugzar Kereselidze, Integration Mathematical and Computer Models of the Information Warfare 116
 116
Jumber Kereselidze, George Mikuchadze, Quantum-Chemical Study of the Propensity of the Amino Acid Pairs for the Peptide Bond Formation 117
 117
Mahnaz Khanehgir, Marzieh Moradian Khaibary, On Hilbert H^{*}-Bimo- dules 118
 118
Marina Kharazishvili, Some Aspects of Using the Internet in the Process of Learning Mathematics 118
 118
Oleg Kharshiladze, Khatuna Chargazia, Interaction of the Zonal Flows with the Dift Waves in the Ionosphere 120
 120
Aben Khvoles, About Some Application of Data Mining for Managements 120
 120
Gela Kipiani, Stability of Thin-Walled Spatial Systems with Discontinuous Parameters 121
 121
 121
Tengiz Kiria, Calculation of Lebesgue Integrals by Using Uniformly Distributed Sequences 121
Berna Koşar, Celil Nebiyev, Ayten Pekin, Amply Cofinitely e-Supplemented Modules 122
 122
Lia Kurtanidze, An Application of Ontology Modeling in Semantic Web 123
 123
Nato Kutaladze, Nino Shareidze, Regional Climate Prediction System for South Caucasus Region 123
 $j^{3} 33^{\text {sltool }}$ rgazombolsungols 123
 124
Ketevan Kutkhashvili, A Problem of Schedule Theory in the Conditions of Restricted Additional Resources 124
Vakhtang Kvaratskhelia, A Note on Relationships between Moments 125
 125
Temur Mushni Kvaratskheliya, Interactive Mathematics Based on Techno- logy "Mathematicos" 126
 мпдопо 126
Ramaz Kvatadze, e-Infrastructure for Research and Education in Georgia 126
 ogob ls 126
Z. Kvatadze, B. Pharjiani, T. Shervashidze, On the Exactness of the Un- known Density Approximation by a Nonparametric Estimate Constructed by Conditionally Independent Observations 127
 127
Levan Labadze, Gogi Pantsulaia, On Consistent Estimator of a Useful Signal in Ornstein-Uhlenbeck Model in $C[-l, l[$ 128
 128
Dali Magrakvelidze, Pareto Efficiency and Achievable Distribution 128
 128
Dali Makharadze, Tsira Tsanava, On the Norm Estimates of Fourier Integ- rals Summability Means in Weighted Grand Lebesgue Space on the Axis 130
 130
Badri Mamporia, On Stochastic Differential Equation Driven by the Cylin- drical Wiener Process 131
 131
Nino Manjavidze, George Makatsaria, Tamaz Vekua, Liouville Type Theorems for First Order Singular Systems131
 131
H. R. Marasi, Some Existence and Uniqueness Results for Fractional Differen- tial Equations with Caputo-Fabrizio Derivative 132
 132
Ia Mebonia, Teaching a Concept 133
 133
George Mikuchadze, Simulation of Air Pollutant Distribution Over the Cau- casus on the Bases of WRF-Chem Model 134
 134
Zurab Modebadze, Software of Distributed Computing Network Monitoring and Analysis 134
 134
Yu. M. Movsisyan, A Characterization of Bigroups of Operations 135
 135
Yu. M. Movsisyan, M. A. Mando, A Characterization of the Belousov Variety 136
 136
Zahir Muradoglu, Numerical Solution of the Non-Linear Biharmonic Equation for Different Boundary Conditions 137
 137
Shahram Najafzadeh, Study on Meromorphic Functions Based on Subordi- nation 137
 dfogòol dglsubg ${ }^{\text {d }}$ 137
Celil Nebiyev, Hasan Hüseyin Ökten, Amply Weak e-Supplemented Mo- dules 138
 дмœущл ${ }^{\circ} \mathrm{o}$ 138
Celil Nebiyev, Hasan Hüseyin Ökten, ET-Small Submodules 139
 139
Alexandra Nikoleishvili, Mikheil Nikoleishvili, Vaja Tarieladze, A Ge-
neralization of a Relation Between Means 140
งмдд 140
Kakhaber Odisharia, Paata Tsereteli, Vladimer Odisharia, Nona Jani- kashvili, About the Mathematical Model of Progression and Treatment of Autoimmune Diseases 141
 141
Archil Papukashvili, Zurab Vashakidze, Numerical Computation of the Kirchhoff type Nonlinear Static Beam Equation by Iterative Method 143
 143
Giorgi Papukashvili, Meri Sharikadze, Numerical Calculations of the Ti- moshenko Type Dynamic Beam Nonlinear Integro-Differential Equation 144
 дglsubg 144
Jemal Peradze, A Difference Scheme for a Nonlinear Integro-Differential Wave Equation 145
 145
Vahe Petrosyan, Dirichlet Problem in the Weighted Spaces $L^{1}(\rho)$ 146
 146
дmbsbso̊o147
Konstantine Pkhakadze, Merab Chikvinidze, George Chichua, David Kurtskhalia, Shalva Malidze, The First Conceptual Draft Version of the Unified Program of the Complete Providing of the Georgian Language with the Language Resources and Technologies 147

Konstantine Pkhakadze, Merab Chikvinidze, George Chichua, David Kurtskhalia, Inesa Beriashvili, Shalva Malidze, The Georgian Smart Corpus - A General Overview of the Already Achieved Results and Planned Aims149

150

Konstantine Pkhakadze, Merab Chikvinidze, George Chichua, David Kurtskhalia, Shalva Malidze, The Project "Technological Alphabet of the Georgian Language" or from the Trial Version of the Georgian Smart Corpus to the Full Version of the Georgian (Universal) Smart Corpus150

151

Konstantine Pkhakadze, David Kurtskhalia, Merab Chikvinidze, George Chichua, Shalva Malidze, The Georgian Smart Corpus - An Important Step Toward Almost Completely Adapted Georgian Internet151

Konstantine Pkhakadze, David Kurtskhalia, Merab Chikvinidze,
George Chichua, Shalva Malidze, The Georgian Smart Corpus and
Georgian Internet and Mobile Monolingual and Multilingual Communica
tion Systems 153

Konstantine Pkhakadze, Shalva Malidze, Merab Chikvinidze, George
Chichua, David Kurtskhalia, The Abkhazian Language Corpus - One of the Important Aims of the Project "In the European Union with the Georgian Language, i.e., the Doctoral Thesis - Elaboration of the New Developing Tools and Methods of the Georgian Smart Corpus and Im- provement of Already Existing Ones" 154
 156
Konstantine Pkhakadze, Shalva Malidze, Merab Chikvinidze, GeorgeChichua, David Kurtskhalia, The General Overview of the Aims, Tasksand Methods of the Project "In the European Union with the GeorgianLanguage, i.e., the Doctoral Thesis - Elaboration of the New DevelopingTools and Methods of the Georgian Smart Corpus and Improvement ofAlready Existing Ones"156
Sopo Pkhakadze, Hans Tompits, On Gentzen-type Proof Systems for Mi- nimal Quantum Logic 157
 157
Omar Purtukhia, About Methods of Stochastic Integral Representation of Wiener Functionals 158
 158
Jemal Rogava, Archil Papukashvili, Zurab Vashakidze, Variational- Difference Scheme for Kirchhoff Two-Dimensional Nonlinear Dynamical Equation 160
 160
Khimuri Rukhaia, Lali Tibua, Sopo Pkhakadze, The Invariance Property of Some Type of Derived Unranked Operators 161
 161
Guram Sadunishvili, Giorgi Karseladze, David Metreveli, Non-Classical Problems of Statics of Linear Thermoelasticity of Microstretch Materials with Microtemperatures 162
 162
Inga Samkharadze, Teimuraz Davitashvili, Convective Clouds Prediction Based on ARL Aerological Diagrams and Radar Observations Data Analysis 162
 162
Ayse Sandikci, A Note on the Rihaczek Transform and its Friends 163
 163
Tamaz Sepiashvili, Vladimer Odisharia, Paata Tsereteli, Kakhaber Odisharia, Parallel Alogirthm For Kirchhoff's One Non-Linear Problem 164
 lsomabl 164
Malkhaz Shashiashvili, Stochastic Variational Inequalities and Optimal Stop- ping 165
 165
Ketevan Shavgulidze, On the Spaces of Generalized Theta-Series with Quadra- tic Forms of Five Variables 166
 166
Leila Sulava, Computer Modeling of Multi-Party Elections 167
 167
Teimuraz Surguladze, The Generalized Maxwell's Body when the Constitu- tive Relationship Contains Conformable Fractional Derivatives 168
 168
Kosta Svanadze, Solution of the First and Second Boundary Value Problems of Statics of the Theory of Elastic Mixture for a Half and a Fourtly Planes 168
 168
Maia M. Svanadze, Potential Method in the Theory of Thermoviscoelasticity of Binary Mixtures 169
 ju@mòols ogmnosð̃o 169
Zurab Tediashvili, On the Solution of the Neumann BVP of Thermo-Electro- Magneto Elasticity for Half Space 170
 170
Tengiz Tetunashvili, On Coverings and Decompositions of Subsets of Eucli- dean Space 171
 171
Giorgi Tetvadze, Lamara Tsibadze, Lili Tetvadze, Features of the Analytic Functions' Border Meanings in the Unit Disk 172
 Iglobg 172
Luka Tikanadze, About Backward Stochastic Integral 172
 172
Paata Tsereteli, Iskander Badzagua, Roman Jobava, About the Fast Direct Solution of DGTD Equation 174
 174
Varden Tsutskiridze, Levan Jikidze, Eka Elerdashvili, MHD-Flow of Conducting Liquid in Ducts with Arbitrary Conductivity of Walls 175
 175
Tristan Turashvili, On the Infinite Sequence of Twin Prime Numbers 176
 176
Burcu Nişancı Türkmen, Ergül Türkmen, I-Rad- \oplus-Supplemented Modules 177
 177
Giorgi Tutberidze, Vakhtang Tsagareishvili, Absolutely Convergence Fac- tors for Lip 1 Class Fourier Coefficients 178
 ®̊м 178
Salaudin Umarkhadzhiev, Hardy Operators in Grand Lebesgue Spaces 179
 179
Teimuraz Vepkhvadze, The Number of Representations of Some Positive In- tegers by Binary Forms 179
 179
Furkan Yildirim, Ercan Celik, On Cross-Sections in the (2,0)-Semitensor Bundle 180
 dglsbgo 180
Kenan Yildirim, Sertan Alkan, An Application of Haar-Wavelet Collocation
Method to a Beam Equation 181
 181
Kenan Yildirim, Shabnam Jamshidzadeh, Reza Abazari, Solitary Wave Solutions of a Special Class of Calogero-Degasperis-Fokas Equation 182
 jemslgòolsuogals 182
David Zarnadze, Soso Tsotniashvili, Mirian Sakhelashvili, On the Gram- matical, Set Interpretations and Unification of Denotations of Logical Ope- rations 182
 182
Zurab Zerakidze, Mzevinar Patsatsia, The Consistent Estimators for Sta- tistical Structures 183
 183
Natela Zirakashvili, Numerical Simulation of Some Non-Classical Elasticity Problems for half-Plane by Boundary Element Method 185
 185
Manana Zivzivadze, About Mathematics Teacher to Assess the Work Per- formed by the Student 185
 dgbsbgo 185
Roland Zivzivadze, Definition of Deflected Mode of Anisotropical Cylindrical Body at the Irregular Temperature Influence 186

Index 187

 дппп оbø̊м @ostrsbmolo.

 дмлщяпмл.

 ofol bumolbo.

งд Зஙゥ

 @).

 bsobacmb.

 - Зпппу

Professor Revaz Absava - 70

lecturer and a docent at the Chair of Algebra-Geometry of the Faculty of Physics and Mathematics at State University of Abkhazia. In 1979-1983 he was a Deputy Dean of the Faculty of Physics and Mathematics.

In 1989-2004 (ante mortem) Revaz Absava held the position of Dean of the Faculty of Mathematics and Computer Sciences at Sokhumi Branch of Tbilisi State University.

Revaz Absava, as a scientist, had finished the school of the Chair of Probability Theory and Mathematical Statistics of Iv. Javakhishvili Tbilisi State University. Under guidance of Professor Elizbar Nadaraia he wrote thesis "On the Nonparametric Kernel Estimation of Density and Regression Function of Multidimensional Distribution" (01.01.05 Probability Theory and Mathematical Statistics) for his Candidate Dissertation, which he successfully defended on October 10, 1986 before the Specialized Council (K.063.68.05) of Moscow Institute of Electronic Machine Building and was awarded the degree of Candidate of Sciences of Physics and Mathematics.

After 1993 R. Absava continued his scientific, pedagogical and administrative works in Tbilisi. During those hard times he headed the Faculty of Mathematics and Computer Sciences, the Chair of Algebra-Geometry and Mathematical Statistics.

The subjects of his studies were: elaboration and application of the method for the marginal distribution of quadratic deviation of general nonparametric estimation of functional properties of the distribution law; construction and determination of the stringency of the criteria for testing simple and complex hypotheses about distribution density and regression curve; solution of some issues of classification and identification problems.

For solution of these problems there are fundamental results obtained by A. Kolmogorov, V. Glivenko, N. Smirnov, M. Rozenblat, E. Parzen, N. Chentsov, E. Nadaraia, R. Holl, I. Ibragimov, R. Khasmisnky and etc.

It is well known that identification plays an essential role in the control problems. Identification is impossible without construction of relevant control object. Formation of essentially different problems of identification of statistical and dynamic systems is possible in the form of function recovery problem, for which its experimental values are given. A problem becomes especially difficult when its experimental values are distorted. The parametric methods of identification are used when several parameters of recovery correlation model are presented. Such models are not used in nonparametric methods. They, to some extent, equalize experimental data. Besides, function-assessment is generally nonparametric.

The Nadaraia-Watson Regression Estimation, Gasser-Mueller Regression Estimation and Distribution Density Estimation by Parzen and Chentsov belong to above mentioned traditional nonparametric estimations. The works of these authors consider concrete problems of distribution density and regression curve estimations and also application of these estimations in the problems of classification and identification.

Naturally, there is a necessity for elaboration of a general theory, which enables full consideration of studies of wide range problems in the estimations of different functional properties of the observation distribution law. This theory is developed in Revaz Absava's Doctorate Dissertation.

He elaborated effective methods for kernel estimation of nonparametric statistics and hypotheses test on the basis of marginal methods. This enabled him to solve many problems, especially, some interesting problems of classification and identification by integrated approach.

Revaz Absava is an author of more than 30 scientific works, among them a monograph, a textbook on Probability Theory and two methodical instructions. His works have been published in foreign and Georgian highly-ranked scientific journals. He participated in numerous international and local conferences.
R. Absava's works are quoted and their quotations are increasing day after day. It means that Revaz Absava's name has been recorded in the History of Mathematical Statistics.

Revaz Absava's scientific researches were accomplished in the form of Doctorate Dissertation: "Nonparametric Estimations and Application of the Functional Properties of the Distribution Law in the Classification and Identification Problems". On March 28, 2004 the dissertation was introduced to the Dissertation Council of Iv. Javakhishvili Tbilisi State University.

On May 28 official opponents were appointed: Professor Albert Shiryaev, a Corresponding Member of the Russian Academy of Sciences (later, since 2011 an Academician of the Russian Academy of Sciences), the Head of Laboratory of the Statistics of Random Processes at V. A. Steklov Institute of Mathematics, Professor Omar Ghlonti and Professor Besarion Dochviri.

The Dissertation Defense date was appointed - 22 October... However, Revaz could not live till that date. He untimely passed away at the age of 57, on May 29, 2004.

Albert Shiryaev, Academician of the Russian Academy of Sciences wrote: "Recently I read Revaz Absava's Dissertation material and wrote a review, which makes it obvious that this work is just significant. R. Absava strived to this goal during many years and obtained new results every time. He had established a goal, but had taken such a hard effort that had left no force to come to the end. We, all were looking forward this great moment, which Revaz Absava earned with his hard work, his scientific results, his extraordinary and charismatic personality...

The scientific society has lost too much as far as he was a great organizer.
It is very pity that such people as Revaz Absava, leave us."
An unprecedented case took place. On the appointed date, October 22, 2004 at the Session of the Dissertation Council Ph. M. 01 08, № 8 of Iv. Javakhishvili Tbilisi State University in TSU I. Vekua Institute of Applied Mathematics Revaz Absava's Doctoral Dissertation was defended. The dissertation was defended by Elizbar Nadaraia, Scientific Consultant, Corresponding Member of Georgian Academy of Sciences. The Dissertation Council awarded the degree of a Doctor of Sciences 01.01.08 of Physics and Mathematics to Georgian Mathematician Revaz Absava after his death.

Monograph "Some Problems of Nonparametric Estimation Theory of the Functional Properties of Observation Distribution Law" was published through Elizbar Nadaraia's effort (Tbilisi, TSU, 2005, 2008).

Revaz Absava's colleagues note that his noble deeds were limitless, his mistakes were extremely little, his behavior was always exemplary, his attitude was favourable towards his coworkers; he was an integrator at the faculty and finally, he was just a merciful, pleasant, modest and a man of high morale... He always had a bright smile on his face... He was a Doctor of Sciences in science, A Professor in the sphere of highest education, and an Academician - in friendship.

Abstracts of Plenary and Invited Speakers

On Algebraic and Geometric Properties of Continuous Maps and Applications

Vladimer Baladze, Anzor Beridze, Ruslan Tsinaridze
Batumi Shota Rustaveli State University, Batumi, Georgia
email: vbaladze@gmail.com; a.beridze@bsu.edu.ge; rtsinaridze@yahoo.com

The covariant and contravariant functors having some main properties of classical homology and cohomology functors [8] are playing essential role in the investigation of various topics of homology theory (see [2]).

The purpose of this report is to discuss the properties of continuous maps from the standpoint of geometric topology and algebraic topology. Using a direct system approach and an inverse system approach of continuous maps ([1]-[3], [5], [7]) V. Baladze studied the (co)shape and (co)homological properties of continuous maps. Applications of the here obtained results include the constructions of fiber shape theory of maps of compact Hausdorff spaces and axiomatic approach to Čech spectral and Chogoshvili projective homology theories ([4], [6]) in the sense of $\mathrm{Hu}[6]$ for the category of compact Hausdorff spaces, without using the relative groups. Some results connected with this axiomatic characterizations of Čech and Chogoshvili (co)homology theories by system of axioms of Hu where announced in [2]. The problem of characterizations of spectral and projective homology theories by Hu system axioms was formulated by V. Baladze [2].

The coauthors would like to thank V. Baladze for her advise, support and stimulating discussion.

MSC 2000: 54C15, 54C20, 54C56.
Keywords: Approximation of maps, Shape, Coshape, Long exact homology and cohomology sequences of maps, Axioms of homology and cohomology theories in the sense of S.-T. Hu.

References

[1] V. Baladze, Fiber shape theory. Proc. A. Razmadze Math. Inst. 132 (2003), 1-70.
[2] V. Baladze, On homology and shape theories of compact Hausdorff spaces. III International Conference of the Georgian Mathematical Union. Book of Abstracts, pp. 82-83, September 2-9, Batumi, Georgia, 2012.
[3] V. Baladze, The (co)shape and (co)homological properties of continuous maps. Mat. Vesnik 66 (2014), no. 3, 235-247.
[4] G. Chogoshvili, On the homology theory of topological spaces. Mitt. Georg. Abt. Akad. Wiss. USSR [Soobshchenia Gruzinskogo Filiala Akad. Nauk SSSR] 1 (1940), 337-342.
[5] D. A. Edwards, P. Tulley McAuley, The shape of a map. Fund. Math. 96 (1977), no. 3, 195-210.
[6] S.-T. Hu, On axiomatic approach to homology theory without using the relative groups. Portugal. Math. 19 (1960), 211-225.
[7] S. Mardešić, Approximate polyhedra, resolutions of maps and shape fibrations. Fund. Math. 114 (1981), no. 1, 53-78.
[8] S. Eilenberg and N. Steenrod, Foundations of algebraic topology. Princeton University Press, Princeton, New Jersey, 1952.

Mixed and Crack Type Dynamical Problems of the Thermopiezoelectricity Theory Without Energy Dissipation

Otar Chkadua
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tbilisi Georgia
Sokhumi State University, Tbilisi, Georgia
email: chkadua@rmi.ge

This paper, we study mixed and crack type boundary value dynamical problems of the linear theory of thermopiezoelectricity for bodies with inner structure. The model under consideration is based on the Green-Naghdi theory of thermo-piezoelectricity without energy dissipation. This theory permits propagation of thermal waves at finite speed. We investigate a mixed boundary value problem for homogeneous isotropic solids with interior cracks. We derive Green's formulae and prove the corresponding uniqueness theorem. Using the Laplace transform, potential method and theory of pseudodifferential equations on a manifolds with boundary we prove existence of solutions and analyze their asymptotic properties. We describe the explicit algorithm for finding the singularity exponents of the thermo-mechanical and electric fields near the crack edges and near the curves, where different types of boundary conditions collide.

This is joint work with T. Buchukuri and D. Natroshvili.

Mixed Boundary Value Problems for the Laplace-Beltrami Equation

Roland Duduchava ${ }^{1}$, Medea Tsaava ${ }^{2}$

${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University \& University of Georgia, Tbilisi, Georgia
email: duduch@rmi.ge
${ }^{2}$ I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: m.caava@yahoo.com

Let \mathcal{C} be a smooth hypersurface in \mathbb{R}^{3} with a smooth boundary decomposed into two connected $\partial \mathcal{C}=\Gamma=\Gamma_{D} \cup \Gamma_{N}$ and non-intersecting $\Gamma_{D} \cap \Gamma_{N}=\varnothing$ parts. Let $\nu(\omega)=$ $\left(\nu_{1}(\omega), \nu_{2}(\omega), \nu_{3}(\omega)\right)^{\top}, \omega \in \overline{\mathcal{C}}$, be the unit normal vector field on the surface \mathcal{C} and consider the Laplace-Beltrami operator written in terms of the Günter's tangent derivatives

$$
\begin{gathered}
\Delta_{\mathcal{C}}:=\mathcal{D}_{1}^{2}+\mathcal{D}_{2}^{2}+\mathcal{D}_{3}^{2}, \quad \mathcal{D}_{j}:=\partial_{j}-\nu_{j} \partial_{\nu}, \quad j=1,2,3 \\
\partial_{\nu}=\sum_{j=1}^{3} \nu_{j} \partial_{j}
\end{gathered}
$$

Let

$$
\nu_{\Gamma}(t)=\left(\nu_{\Gamma, 1}(t), \nu_{\Gamma, 2}(t), \nu_{\Gamma, 3}(t)\right), \quad t \in \Gamma,
$$

be the unit normal vector field on the boundary Γ, which is tangential to the surface \mathcal{C} and directed outside of the surface. We study the following mixed boundary value problem for the Laplace-Beltrami equation

$$
\left\{\begin{array}{l}
\Delta_{\mathcal{C}} u(t)=f(t), \quad t \in \mathcal{C}, \quad u^{+}(\tau)=g(\tau), \quad \tau \in \Gamma_{D} \tag{1}\\
\left(\partial_{\nu_{\Gamma}} u\right)^{+}(\tau)=h(\tau), \quad \tau \in \Gamma_{N}, \quad \partial_{\nu_{\Gamma}}:=\sum_{j=1}^{3} \nu_{\Gamma, j} \mathcal{D}_{j}
\end{array}\right.
$$

Lax-Milgram Lemma, applied to the BVP (1), gives that it has a unique solution in the classical setting $f \in \widetilde{\mathbb{H}}^{-1}(\mathcal{C}), g \in \mathbb{H}^{1 / 2}(\Gamma), h \in \mathbb{H}^{-1 / 2}(\Gamma)$.

But in some problems, for example in approximation methods, it is important to know the solvability properties in the non-classical setting

$$
\begin{equation*}
f \in \widetilde{\mathbb{H}}_{p}^{s-2}(\mathcal{C}), \quad g \in \mathbb{W}_{p}^{s-1 / p}(\Gamma), \quad h \in \mathbb{W}_{p}^{s-1-1 / p}(\Gamma), \quad 1<p<\infty, \quad s>\frac{1}{p} \tag{2}
\end{equation*}
$$

Figure 1. Solutions to the equation (3).

Theorem. Let $1<p<\infty$, s>1/p. The BVP (1) is Fredholm in the nonclassical setting (see (3)) if and only if

$$
\begin{equation*}
\cos ^{2} \pi s-\left|\sin 2 \pi\left(s-\frac{1}{p}\right)\right| \neq 0 \tag{3}
\end{equation*}
$$

In other words the curves on Figure 1 does not cross the point ($s-k, 1 / p$), where $k=0,1, \ldots$ is an integer such that $\frac{1}{2}<s-k \leqslant \frac{3}{2}$.

In particular, the $B V P$ (1) has a unique solution u in the non-classical setting (2) if $s-1 / p$ coincided with its fractional part $s-1 / p=\{s-1 / p\}$ and the point ($s-1 / p, 1 / p$) belongs to the open curved quadrangle $A B C D$ on Figure 1.

The Dynamical Structure of the QCD Ground State

Vakhtang Gogokhia ${ }^{1,2}$, Gergely Gábor Barnaföldi ${ }^{1}$
${ }^{1}$ Department of Theoretical Physics, WIGNER Research Centre for Physics Budapest, Hungary
${ }^{2}$ Department of Theoretical Physics, A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: gogohia.vahtang@wigner.mta.hu, gogokhia@rmi.ge;
barnafoldi.gergely@wigner.mta.hu

Using the effective potential approach for composite operators [1], we have formulated a general method of calculation of the truly non-perturbative Yang-Mills vacuum energy density (VED), which is, by definition, the bag constant apart from the sign. It is the main dynamical characteristic of the QCD ground state. Our method allows one to make it free of all the types of the perturbative contributions ('contaminations'), by construction. We also perform an actual numerical calculation of the bag constant as a function of the mass gap. It is this which is responsible for the large-scale dynamical structure of the

QCD ground state [2]. The existence of the stable (being in the stationary state with minimum energy) purely transversal virtual gluon field configurations has been explicitly shown. Using further the trace anomaly relation, we develop a general formalism which makes it possible to relate the bag constant to the gluon condensate defined at the same β function (or, equivalently, effective charge) which has been chosen for the calculation of the bag constant itself. Our numerical result for it shows a good agreement with other phenomenological estimates of the gluon condensate. We have argued that the calculated bag constant may contribute to the dark energy density. Its contribution is by 10 orders of magnitude better than the estimate from the Higgs field's contribution. We also propose to consider the bag energy as a possible amount of energy which can be released from the QCD ground state by a single cycle. The QCD ground state is shown to be an infinite and hence a permanent reservoir of energy.

References

[1] J. M. Cornwall, R. Jackiw, E. Tomboulis, Effective action for composite operators. Phys. Rev. D 10 (1974), no. 8, 2428-2445.
[2] V. Gogokhia, G. G. Barnafoldi, The Mass gap and its applications. World Scientific, 2013.

Matrix Centralizers and Their Applications

Alexander E. Guterman

Department of Mathematics and Mechanics, Lomonosov Moscow State University
Moscow, Russia
email: guterman@list.ru

For a matrix $A \in M_{n}(\mathbb{F})$ its centralizer

$$
\mathcal{C}(A)=\left\{X \in M_{n}(\mathbb{F}) \mid A X=X A\right\}
$$

is the set of all matrices commuting with A. For a set $S \subseteq M_{n}(\mathbb{F})$ its centralizer

$$
\mathcal{C}(S)=\left\{X \in M_{n}(\mathbb{F}) \mid A X=X A \text { for every } A \in S\right\}=\bigcap_{A \in S} \mathcal{C}(A)
$$

is the intersection of centralizers of all its elements. Centralizers are important and useful both in fundamental and applied sciences.

A non-scalar matrix $A \in M_{n}(\mathbb{F})$ is minimal if for every $X \in M_{n}(\mathbb{F})$ with $\mathcal{C}(A) \supseteq \mathcal{C}(X)$ it follows that $\mathcal{C}(A)=\mathcal{C}(X)$. A non-scalar matrix $A \in M_{n}(\mathbb{F})$ is maximal if for every non-scalar $X \in M_{n}(\mathbb{F})$ with $\mathcal{C}(A) \subseteq \mathcal{C}(X)$ it follows that $\mathcal{C}(A)=\mathcal{C}(X)$.

We investigate and characterize minimal and maximal matrices over arbitrary fields.
Our results are illustrated by applications to the theory of commuting graphs of matrix rings, to the preserver problems, namely to characterize commutativity preserving maps on matrices, and to the centralizers of high orders.

The talk is based on several joint works with G. Dolinar, B. Kuzma, and P. Oblak.

On Caveney-Nicolas-Sondow Hypothesis for Gronwall Numbers

Gennadiy A. Kalyabin
Samara State Technical University, Samara, Russia
email: gennadiy.kalyabin@gmail.com

In 1913 T . Gronwall [1] introduced the numbers $G(N):=\sigma(N) / N \log \log N$, where $\sigma(N)$ and $\log x$ stand for the sum of all divisors of an integer $N>1$ and natural logarithm of $x>0$, respectively, and established the limit relationship:

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} G(N)=e^{\gamma}=1.78107 \ldots, \tag{1}
\end{equation*}
$$

where $\gamma=0.57721 \ldots$ is the Euler-Masceroni constant. S. Ramanujan proved in 1915 (published in 1997) that if Riemann Hypothesis (RH) holds true then $G(N)<e^{\gamma}$ for all sufficiently large N. The next step was made by G. Robin [2] who obtained in 1984 much stronger result of principle significance, namely:
$(\mathbf{R H})$ iff $G(N)<e^{\gamma}$ for all integers $N>N_{0}:=2^{4} \cdot 3^{2} \cdot 5^{1} \cdot 7^{1}=5040$.
Let us call an integer $N>1$ to be G-improvable, $(N \in \mathbf{I})$ iff either:
$\left(\mathbf{I}_{/}\right):$there is a prime $q<N, q \mid N$, such that $G(N / q)>G(N)$,
or:
$\left(\mathbf{I}_{\times}\right)$: there is an integer $A>1$ such that $G(A N)>G(N)$.
Note that the numbers 3,4 and 5 are not G-improvable.
Theorem. Every integer $N>5$ is G-improvable.

Ascertaining the equivalence of this proposition with both parts of (2) is the main substance of [3], where excellent exposition and exhausted historical comments may be found. Thus the Theorem stated above implies the validity of ($\mathbf{R H}$).

The key idea of the Theorem's proof is to consider the special class $\mathbf{U}_{\mathbf{1}}$ of all those $N^{*}>5$ which cannot be G-improved by neither division nor multiplication by any single prime. Note that this class is not empty and $\min \left\{N^{*}: N^{*} \in \mathbf{U}_{\mathbf{1}}\right\}=N_{1}^{*}=$ $2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23=160626866400$. The elements of $\mathbf{U}_{\mathbf{1}}$ are of very specific structure which allows for every $N^{*} \in \mathbf{U}_{\mathbf{1}}$ to choose explicitly two positive u, v depending on N^{*} in such a way that $G\left(K(u) K(v) N^{*}\right)>G\left(N^{*}\right)$, where $K(x)$ stands for the product of all primes $p, x<p \leq 2 x$.

AMS 2010 Subject Classification: 11A25, 11N05, 11N37.
The work was supported by grant of Russian Foundation of Basic Research, project no. 14-01-00684.

The author is deeply grateful to Valeriy V. Kozlov for his interest to this research.

References

[1] T. H. Gronwall, Some asymptotic expressions in the theory of numbers. Trans. Amer. Math. Soc. 14 (1913), no. 1, 113-122.
[2] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann. (French) [Large values of the sum-of-divisors function and the Riemann hypothesis] J. Math. Pures Appl. (9) 63 (1984), no. 2, 187-213.
[3] G. Caveney, J.-L. Nicolas, J. Sondow, Robin's theorem, primes, and a new elementary reformulation and the Riemann hypothesis. Integers 11 (2011), A33, 10 pp .

Fold-up Derivatives of Set-Valued Functions: Its Definition and Applications

Estate Khmaladze
School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
email: Estate.Khmaladze@vuw.ac.nz

We give a survey on fold-up derivatives, a notion which was introduced in Khmaladze (2007) and extended in Khmaladze and Weil (2014) to describe infinitesimal changes in
a set-valued function. We summarise the geometric background and compare the foldup derivatives with other notions of differentials of set-valued functions, namely, those of tangent cones of, e.g., Aubin and Frankowska (1990), differential inclusions of, e.g., Artstein (1995) and, a very obvious choice, of generalised functions on boundary of sets.

We discuss in more detail applications in statistics, in particular to the change-set problem of spatial statistics, and show how the notion of fold-up derivatives leads to the theory of testing statistical hypotheses about the change set. We formulate Poisson limit theorems for the log-likelihood ratio in two versions of this problem and present also the route to a central limit theorem.

The talk is based on joint work with John Einmahl (Tilburg) and Wolfgang Weil (Karlsruhe). The review paper was invited to the Annals of the Institute of Statistical Mathematics, and will appear in January 2018.

References

[1] A. Artstein, A calculus for set-valued maps and set-valued evolution equations. Set-Valued Anal. 3 (1995), no. 3, 213-261.
[2] J.-P. Aubin, H. Frankowska, Set-valued Analysis. Set-valued analysis. Systems \& Control: Foundations \& Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.
[3] E. V. Khmaladze, Differentiation of sets in measure. J. Math. Anal. Appl. 334 (2007), no. 2, 1055-1072.
[4] J. H. J. Einmahl, E. V. Khmaladze, Central limit theorems for local empirical processes near boundaries of sets. Bernoulli 17 (2011), no. 2, 545-561.
[5] E. Khmaladze, W. Weil, Local empirical processes near boundaries of convex bodies. Ann. Inst. Statist. Math. 60 (2008), no. 4, 813-842.
[6] E. Khmaladze, W. Weil, Differentiation of sets-the general case. J. Math. Anal. Appl. 413 (2014), no. 1, 291-310.
[x] And about 50 more in the forthcoming paper.

Extrapolation, Singular Integrals, Applications to the BVPs

Vakhtang Kokilashvili
Andrea Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: kokil@rmi.ge

The goal of our talk is to present the extrapolation results in nonstandard Banach function spaces defined both on quasi-metric measure spaces and product spaces.Based on these results we prove the boundedness of non-harmonic analysis operators and give various applications to the BVPs of analytic functions.

Harmonic Univalent Maps and Pseudo-Hyperbolic Distance

Yusuf Abu Muhanna
University of Sharjah, UAE
email: ymuhanna@aus.edu

The class of harmonic univalent functions shall be introduced together with the hyperbolic metric and the psudo-hyperbolic distance. Emphacis shall be on potential theoretic issues. With the help of the properties of pseudo-hyperbolic distance, many new results on area distortion, of some classes of orientation preserving harmonic mappings such as the class of harmonic univalent maps onto the disk, the class of orientation preserving Bloch and BMOH maps. Issues and problems shall be suggested.

Stefan Banach and Georgia (On the occasion of Stefan Banach's 125-th Birthday Anniversary)

Vaja Tarieladze
N. Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
email: v.tarieladze@gtu.ge

Five years ago I wrote [1]:

1. On Saturday, March 15, 1941 "the delegation of Lvov State University, lead by S. S. Banach, the famous mathematician, arrived in Tbilisi... Banach, the head of delegation said... Our delegation will stay in Georgia for five days..."
2. "Gori, March 19. The professors of Lvov University comrades Banach, Zarits'kyi, docent Braginets and lady-student Solyak arrived to Gori".

In the first part of my talk I'll give some further comments about S . Banach's visit to Georgia. The second part of the talk will deal with two problems posed by him. One of the problems is taken from W. Orlicz's (1903-1990) paper [2, p. 124], while the another one is [3, Problem 106, p. 188]. I'll follow mainly [4] with some supplements related to the contribution of my colleagues from Georgia.

Acknowledgement. This talk was supported by N. Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University.

References

[1] V. Tarieladze, Stefan Banach in Tbilisi (On the occasion of his 120-th Birthday Anniversary). III International Conference of the Georgian Mathematical Union. Book of Abstracts, pp. 21-26, September 2-9, Batumi, Georgia, 2012.
[2] W. Orlicz, Über die unabhängig von der Anordnung fast überall konvergenten Funktionenreihen. (German) Bulletin Acad. Polonaise (A) 1927, 117-125.
[3] R. D. Mauldin (Ed.), The Scottish Book. Mathematics from the Scottish Café. Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, Tex., May 1979. Birkhäuser, Boston, Mass., 1981.
[4] M. I. Kadets, V. M. Kadets, Series in Banach spaces: conditional and unconditional convergence. Operator Theory: Advances and Applications. 94. Birkhäuser, Basel, 2012.

Convergence and Summability of Vilenkin-Fourier Series in the Martingale Hardy Spaces

George Tephnadze
University of Georgia, Tbilisi, Georgia;
Department of Engineering Sciences and Mathematics, Luleå University of Technology Luleå, Sweden
email: giorgitephnadze@gmail.com

The classical theory of Fourier series deals with decomposition of a function into sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in the theory of signal transmission, multiplexing, filtering, image enhancement, codic theory, digital signal processing and pattern recognition. The development of the theory of Vilenkin-Fourier series has been strongly influenced by the classical theory of trigonometric series. Because of this it is inevitable to compare results of Vilenkin series to those on trigonometric series. There are many similarities between these theories, but there exist differences also. Much of these can be explained by modern abstract harmonic analysis, which studies orthonormal systems from the point of view of the structure of a topological group.

This lecture is devoted to review theory of martingale Hardy spaces. We present central theorem about atomic decomposition of these spaces when $0<p \leq 1$. We also present how this result can be used to prove boundedness of some operators on the martingale Hardy spaces and give a brief review how it can be connected to the theory of almost everywhere convergence. Moreover we present new estimations of Vilenkin-Fourier coefficients and prove some new results concerning boundedness of maximal operators of partial sums. Moreover, we derive necessary and sufficient conditions for the modulus of continuity so that norm convergence of the partial sums is valid and present Hardy type inequalities for the partial sums with respect to the Vilenkin systems. We also do the similar investigation for the Fejér means. Furthermore, we investigate some Nörlund means but only in the case when their coefficients are monotone. Some well-know examples of Nörlund means are Fejér means, Cesàro means and Nörlund logarithmic means. In addition, we consider Riesz logarithmic means, which is not example of Nörlund means. It is also proved that these results are the best possible in a special sense. As applications both some well-known and new results are pointed out.

References

[1] F. Schipp, W. R. Wade, P. Simon, J. Pál, Walsh series. An introduction to dyadic harmonic analysis. Adam Hilger, Ltd., Bristol, 1990.
[2] G. Tephnadze, Martingale Hardy Spaces and Summability of the One Dimensional Vilenkin-Fourier Series. Ph.D. thesis, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Oct. 2015 (ISSN 1402-1544).
[3] F. Weisz, Summability of multi-dimensional Fourier series and Hardy spaces. Mathematics and its Applications. 541. Kluwer Academic Publishers, Dordrecht, 2002.
[4] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis. Lecture Notes in Mathematics, 1568. Springer-Verlag, Berlin, 1994.

On Universal Series of Functions

Shakro Tetunashvili
A. Razmazde Mathematical Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
email: stetun@rmi.ge

In our presentation we consider universal series with respect to systems of measurable and almost everywhere finite functions and represent several properties of such series. It follows from these properties theorems concerning universal series with respect to orthonormal systems of functions. Some of these theorems are also discussed.

Some Deterministic and Stochastic Estimations for Measuring Efficiency of Algorithms

Nodari Vakhania
Centro de Investigación en Ciencias, UAEMor, Mexico
N. Muskhelishvili Institute of Computational Mathematics of the
Georgian Technical University, Tbilisi, Georgia
email: nodari@uaem.mx

Dedicated to the memory of my father
The computational complexity of an algorithm is traditionally measured for the worst and also for the average case. The worstcase estimation guarantees a certain worst case
behavior of a given algorithm, although it might be rough, as for "most of the instances", the algorithm may have a significantly better performance. The probabilistic averagecase analysis pretends to derive an average performance of an algorithm, say, for an "average instance" of the problem in question. That instance may be far away from the average of the problem instances arising in a given real-life application, and then, an average case analysis would also provide a non-realistic estimation. We suggest that, in general, a wider use of the probabilistic models for a more accurate estimation of the algorithm efficiency is possible. For instance, the quality of the solutions delivered by an approximation algorithm may also be estimated in "average" probabilistic case. Such an approach would deal with the estimation of the quality of the solutions delivered by the algorithm for the most common (for a given application) problem instances. As we will illustrate, probabilistic modeling can also be used to derive an accurate time complexity performance measure, distinct from the traditional probabilistic average-case time complexity measure. Such an approach could, in particular, be useful when the traditional average-case estimation is still rough or is not possible at all.

Abstracts of Participants' Talks

On the Nonexistence of Global Solutions of Cauchy Problem for a Class of System of Nonlinear Hyperbolic Equations with Positive Initial Energy

Akbar B. Aliev ${ }^{1,2}$, Gunay I. Yusifova ${ }^{3}$
${ }^{1}$ Azerbaijan Technical University, Baku, Azerbaijan
${ }^{2}$ Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan Baku, Azerbaijan
email: alievakbar@gmail.com
${ }^{3}$ Ganja State University, Ganja, Azerbaijan

We consider the following initial boundary value problem:

$$
\begin{equation*}
u_{i t t}-\Delta u_{i}+u_{i}+u_{i t}=f_{i}\left(u_{1}, u_{2}, u_{3}\right), \quad x \in R^{n}, \quad t>0, \quad i=1,2,3 \tag{1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u_{i}(0, x)=u_{i 0}(x), \quad u_{i t}(0, x)=u_{i 1}(x), \quad x \in R^{n}, \quad i=1,2,3, \tag{2}
\end{equation*}
$$

where $f_{i}\left(u_{1}, u_{2}, u_{3}\right)=\left|u_{1}\right|^{p_{i 1}}\left|u_{2}\right|^{p_{i 2}}\left|u_{3}\right|^{p_{i 3}} u_{i}, \rho_{i i}=p_{i}-1, \rho_{i k}=p_{k}+1, i, k=1,2,3, p_{1}$, p_{2}, p_{3} are real numbers. The goal of this paper is to investigate nonexistence of global solutions to the problem (1), (2).

Assume that

$$
\begin{equation*}
n \geq 2, \quad p_{j} \geq 0, \quad j=1,2,3 \tag{3}
\end{equation*}
$$

and additionally

$$
\begin{equation*}
p_{1}+p_{2}+p_{3} \leq \frac{2}{n-2} \quad \text { if } n \geq 3 \tag{4}
\end{equation*}
$$

Introduce the following notation

$$
\begin{aligned}
E(t)= & \left.\left.\sum_{j=1}^{3} \frac{p_{j}+1}{2}\left[\left|u_{j t}^{\prime}\right|^{2}+\left\|u_{j}\right\|^{2}+\int_{0}^{1} \mid u_{j t}^{\prime} s, \cdot\right)\right|^{2} d s\right] \\
& +\int R^{n}\left|u_{1}(t, x)\right|^{p_{1}+1} \cdot\left|u_{2}(t, x)\right|^{p_{2}+1}\left|u_{3}(t, x)\right|^{p_{3}+1} d x \\
I\left(\phi_{1}, \phi_{2}, \phi_{3}\right)= & \sum_{j=1}^{3} \frac{p_{j}+1}{p_{1}+p_{2}+p_{3}+3}\|u\|^{2}-\int R^{n}\left|\phi_{1}(x)\right|^{p_{1}+1} \cdot\left|\phi_{2}(x)\right|^{p_{2}+1}\left|\phi_{3}(x)\right|^{p_{3}+1} d x .
\end{aligned}
$$

Theorem. Let conditions (3), (4) be satisfied, $u_{i 0} \in H^{1}$ and $u_{i 1} \in L_{2}\left(R^{n}\right), i=1,2,3$, and in addition, assume that the following conditions are satisfied:

$$
E(0)>0, \quad I\left(u_{10}, u_{20}, u_{30}\right)<0
$$

$$
\sum_{j=1}^{3}\left\langle u_{j 0}, u_{j 1}\right\rangle \geq 0, \quad \sum_{j=1}^{3} \frac{p_{j}+1}{2}\left|u_{j 0}\right|^{2}>\frac{p_{2}+p_{2}+p_{3}+3}{p_{2}+p_{2}+p_{3}} E(0)
$$

Then the solution of the Cauchy problem (1), (2) blows up in finite time.

References

[1] A. B. Aliev, A. A. Kazimov, Nonexistence of global solutions of the Cauchy problem for systems of Klein-Gordon equations with positive initial energy. (Russian) Differ. Uravn. 51 (2015), no. 12, 1587-1592; translation in Differ. Equ. 51 (2015), no. 12, 1563-1568.

Solvability of a Boundary Value Problem for Second Order Elliptic Differential-Operator Equations

Bahram A. Aliev
Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
Baku, Azerbaijan
Azerbaijan State Pedagogical University, Baku, Azerbaijan
email: aliyevbakhram@yandex.ru

In the separable Hilbert space H we study the solvability of the following boundary value problem for second order elliptic differential equation

$$
\begin{align*}
L(\lambda, D) u & :=\lambda u(x)-u^{\prime \prime}(x)+A u(x)=f(x), \quad x \in(0,1), \tag{1}\\
L_{1}(\lambda) u & :=u^{\prime}(0)+\alpha \lambda u(1)=f_{1}, \tag{2}\\
L_{2} u & :=u(0)=f_{2}, \tag{3}
\end{align*}
$$

where λ is a complex parameter.
Theorem. Let the following conditions be fulfilled: A is a strongly positive operator in $H ; \alpha \neq 0$ is some complex number. Then problem (1), (2) for $f \in L_{p}\left((0,1) ; H\left(A^{1 / 2}\right)\right)$, $f_{1} \in(H(A), H)_{\frac{1}{2}+\frac{1}{2 p}, p}, f_{2} \in\left(H\left(A^{2}\right), H\right)_{\frac{1}{4}+\frac{1}{4 p}, p}$, where $1<p<\infty$, and $|\arg \lambda| \leq \pi<\varphi,|\lambda|$ is sufficiently large, has a unique solution that belongs to the space $W_{p}^{2}((0,1) ; H(A), H)$ and, for these λ, the following noncoercive estimate holds for the solution of problem (1), (2):

$$
\begin{aligned}
&|\lambda|\|u\|_{L_{p}((0,1) ; H)}+\left\|u^{\prime \prime}\right\|_{L_{p}((0,1) ; H)}+\|A u\|_{L_{p}((0,1) ; H)} \\
& \leq C\left(|\lambda|\|f\|_{L_{p}\left((0,1) ; H\left(A^{\frac{1}{2}}\right)\right)}+\left\|f_{1}\right\|_{(H(A), H)_{\frac{1}{2}+\frac{1}{2 p}, p}}\right. \\
&\left.+\left\|f_{2}\right\|_{\left(H\left(A^{2}\right), H\right)_{\frac{1}{4}+\frac{1}{4 p}, p}}+\left\|f_{1}\right\|_{H}+|\lambda|^{\frac{3}{2}-\frac{1}{2 p}}\left\|f_{2}\right\|_{H}\right) .
\end{aligned}
$$

The boundary value problem similar to boundary value problem (1), (2) was studied in the paper [1].

References

[1] B. A. Aliev, Ya. Yakubov, Second order elliptic differential-operator equations with unbounded operator boundary conditions in UMD Banach spaces. Integral Equations Operator Theory 69 (2011), no. 2, 269-300.

Global Bifurcation in Some Nonlinearizable Eigenvalue Problems with Indefinite Weight

Ziyatkhan Seyfaddin Aliyev ${ }^{1}$, Rada Alirza Huseynova ${ }^{2}$
${ }^{1}$ Department of Mathematical Analysis, Baku State University, Baku, Azerbaijan email: z_aliyev@1.rumai
${ }^{2}$ Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences Baku, Azerbaijan
email: rada_huseynova@yahoo.com

We consider the following fourth order boundary value problem

$$
\begin{array}{r}
\left(p(t) u^{\prime \prime}\right)^{\prime \prime}-\left(q(t) u^{\prime}\right)^{\prime}=\lambda r(t) u+h\left(t, u, u^{\prime}, u^{\prime \prime}, u^{\prime \prime \prime}, \lambda\right), \quad t \in(0,1), \\
u^{\prime}(0) \cos \alpha-\left(p u^{\prime \prime}\right)(0) \sin \alpha=0, \quad u^{\prime}(1) \cos \gamma+\left(p u^{\prime \prime}\right)(1) \sin \gamma=0, \\
u(0) \cos \beta+T u(0) \sin \beta=0, \tag{2}
\end{array} \quad u(1) \cos \delta-T u(1) \sin \delta=0, ~ \$
$$

where $\lambda \in \mathbb{R}$ is a spectral parameter, $T y \equiv\left(p u^{\prime \prime}\right)^{\prime}-q u^{\prime}$, the function $p(t)$ is strictly positive and continuous on $[0,1], p(t)$ has an absolutely continuous derivative on $[0,1], q(t)$ is nonnegative and absolutely continuous on $[0,1]$, the weight function $r(t)$ is sign-changing continuous on $[0,1]$ and $\alpha, \beta, \gamma, \delta$ are real constants such that $0 \leq \alpha, \beta, \gamma, \delta \leq \pi / 2$. The nonlinear term has the representation $h=f+g$, where $f, g \bar{\in} C\left([0,1] \times \overline{\mathbb{R}^{5}}\right)$ are real-valued functions satisfying the following conditions:

$$
u f(t, u, s, v, w, \lambda) \leq 0, \quad(t, u, s, v, w, \lambda) \in[0,1] \times \mathbb{R}^{5}
$$

there exists constants $M>0$ such that

$$
\begin{equation*}
\left|\frac{f(t, u, s, v, w, \lambda)}{u}\right| \leq M, \quad(t, u, s, v, w, \lambda) \in[0,1] \times \mathbb{R}^{5} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
g(t, u, s, v, w, \lambda)=o(|u|+|s|+|v|+|w|) \tag{4}
\end{equation*}
$$

in a neighborhood of $(u, s, v, w)=(0,0,0,0)$ uniformly in $t \in[0,1]$ and in $\lambda \in \Lambda$, for every bounded interval $\Lambda \subset \mathbb{R}$.

The problem (1), (2) with $r>0$ under conditions (3) and (4) was considered in a paper [1] (see also [2]). In the case when r is a sign-changing function the methods of this work are not applicable.

Although problem (1), (2) is not linearizable in a neighborhood of the origin (when $f \not \equiv$ 0), it is nevertheless related to a linear problem which is perturbation of problem (1), (2) with $h \equiv 0$. We estimate the distance between the principal eigenvalues of the perturbed and unperturbed problem. Using this estimation we find the bifurcation intervals. We show the existence of two pair of unbounded continua of solutions emanating from the bifurcation intervals and contained in the classes of positive and negative functions.

References

[1] Z. S. Aliyev, On the global bifurcation of solutions of some nonlinear eigenvalue problems for fourth-order ordinary differential equations. (Russian) Mat. Sb. 207 (2016), no. 12, 3-29; translation in Sb. Math. 207 (2016), no. 12, 1625-1649.
[2] Z. S. Aliyev, Some global results for nonlinear fourth order eigenvalue problems. Cent. Eur. J. Math. 12 (2014), no. 12, 1811-1828.

Spectral Properties for the Equation of Vibrating Rod on Right End of which an Inertial Load is Concentrated

Ziyatkhan Seyfaddin Aliyev ${ }^{1,2}$, Nazim Bakhish Kerimov ${ }^{3}$
${ }^{1}$ Department of Mathematical Analysis, Baku State University, Baku, Azerbaijan
${ }^{2}$ Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences Baku, Azerbaijan
${ }^{3}$ Department of Mathematics, Khazar University, Baku, Azerbaijan
email: z_aliyev@mail.ru; nazimkerimov@yahoo.com

We consider the following eigenvalue problem

$$
\begin{gather*}
y^{(4)}(x)-\left(q(x) y^{\prime}(x)\right)^{\prime}=\lambda y(x), \quad 0<x<1, \tag{1}\\
y(0)=y^{\prime}(0)=0, \tag{2}\\
y^{\prime \prime}(1)-a_{1} \lambda y^{\prime}(1)=0 \tag{3}\\
T y(1)-a_{2} \lambda y(1)=0, \tag{4}
\end{gather*}
$$

where $\lambda \in \mathbb{C}$ is spectral parameter, $T y \equiv y^{\prime \prime \prime}-q y^{\prime}, q(x)$ is positive and absolutely continuous function on $[0,1], a_{1}$ and a_{2}, are real constants, such that $a_{1}>0, a_{2}>0$.

The problem (1)-(4) arises when variables are separated in the dynamical boundary value problem describing bending vibrations of a homogeneous rod, in cross-sections of which the longitudinal force acts, the left end of which is fixed rigidly and on the right end an inertial mass is concentrated (see [1, Ch. 8, §5]).

Note that the signs of the parameters a_{1} and a_{2} play an important role. If $a_{1}>0$ and $a_{2}<0$, then problem (1)-(4), can be treated as a spectral problem for a self-adjoint operator in the Hilbert space $H=L_{2}(0,1) \oplus \mathbb{C}^{2}$. This case was considered in [2]. If $a_{1}>0$ and $a_{2}>0$, then this problem is equivalent to a spectral problem for the selfadjoint operator in the Pontryagin space $\Pi_{1}=L_{2}(0,1) \oplus \mathbb{C}^{2}$ with the corresponding inner product.

In the present work we study the location of the eigenvalues on the real axis, the structure of root subspaces, we obtain asymptotic formulas for eigenvalues and eigenfunctions, and using these asymptotic formulas we establish sufficient conditions for the subsystems of eigenfunctions of $(1)-(4)$ to form a basis in the space $L_{p}(0,1), 1<p<\infty$.

References

[1] B. B. Bolotin, Vibrations in technique: Handbook in 6 volumes, The vibrations of linear systems. I. Engineering Industry, Moscow, 1978.
[2] Z. S. Aliev, S. B. Guliyeva, Properties of natural frequencies and harmonics bending vibrations of a rod at one end of which is concentrated inertial load. J. Differential Equations (to appear).

A Collocation Method for Solving Fractional Bratu-Type Equation
Sertan Alkan ${ }^{1}$, Kenan Yildirim ${ }^{2}$
${ }^{1}$ Iskenderun Technical University, Hatay, Turkey
email: sertan.alkan@iste.edu.tr
${ }^{2}$ Mus Alparslan University, Mus, Turkey
email: kenanyildirim52@gmail.com

In this study, we obtain the numerical solution of the fractional Bratu-type equation using the sinc-collocation method. Numerical examples are presented to verify the efficiency and accuracy of the proposed algorithm. Finally, the approximate solutions are shown both graphically and in tabular forms.

Solving a System of Nonlinear Fractional Integro-Differential Equations

Sertan Alkan ${ }^{1}$, Kenan Yildirim ${ }^{2}$
${ }^{1}$ Iskenderun Technical University, Hatay, Turkey
email: sertan.alkan@iste.edu.tr
${ }^{2}$ Mus Alparslan University, Mus, Turkey
email: kenanyildirim52@gmail.com

In this study, we obtain approximate solutions of a system of nonlinear fractional integro-differential equations by the sinc collocation method. To demonstrate the effectiveness of the method, we give some examples. Also, we compare the obtained numerical solutions and their exact solutions by using Mathematica.

Nilpotent Exponential MR-Groups

Mikheil Amaglobeli
Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University
Tbilisi, Georgia
email: mikheil.amaglobeli@tsu.ge

The notion of exponential R-group (R is an arbitrary associative ring with identity) was introduced by Lyndon in [1]. In [2], Myasnikov refined the notion of a exponential R-group by introducing and additional axiom. In particular the new notion of a exponential Rgroup is a direct generalization of the notion of a R-module to the case of non-commutative groups. In honour to Myasnikov, R-groups with this axiom in Amaglobeli's paper [3] has nomed MR-groups. This report is dedicated to the theory of varieties of nilpotent MRgroups. Moreover, the various analogs of the notion of n-class nilpotent group in the category of MR-groups are introduced, and it is shown that they coincide for $n=1,2$. The question whether these notions coincide remains open for $n>2$.

References

[1] R. C. Lyndon, Groups with parametric exponents. Trans. Amer. Math. Soc. 96 (1960), 518-533.
[2] A. G. Myasnikov, V. N. Remeslennikov, Degree groups. I. Foundations of the theory and tensor completions. (Russian) Sibirsk. Mat. Zh. 35 (1994), no. 5, 1106-1118; translation in Siberian Math. J. 35 (1994), no. 5, 986-996.
[3] M. Amaglobeli, Precise exponential MR-groups. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 28 (2014), 1-4.
[4] M. G. Amaglobeli, V. N. Remeslennikov, Fundamentals of the theory of varieties of nilpotent MR-groups. (Russian) Sibirsk. Mat. Zh. 57 (2016), no. 6, 1197-1207; translation in Siberian Math. J. 57 (2016), no. 6, 935-942.

јщ. gmb g̊ols дobっдımono: a.ambroladze@freeuni.edu.ge

On the H-Wellposedness of the Singular Cauchy Problem for Systems of Linear Generalized Differential Equations

Malkhaz Ashordia ${ }^{1,2}$, Nino Topuridze ${ }^{2}$
${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
${ }^{2}$ Faculty of Mathematics and Computer Sciences, Sukhumi State University Tbilisi, Georgia
email: ashord@rmi.gel; topurnino@yahoo.com

Let $I \subset R$ be an interval non-degenerate in the point, $t_{0} \in I, I_{t_{0}}=I \backslash\left\{t_{0}\right\}$. Consider the singular Cauchy problem for linear system of generalized ordinary differential equations

$$
\begin{equation*}
d x=d A(t) \cdot x+d f(t) \text { for } t \in I_{t_{0}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow t_{0}+}\left(H^{-1}(t) x(t)\right)=0 \tag{2}
\end{equation*}
$$

where $A \in \mathrm{BV}_{l o c}\left(I_{t_{0}} ; R^{n \times n}\right)$ and $f \in \mathrm{BV}_{l o c}\left(I_{t_{0}} ; R^{n}\right)$, i.e. A and f are, respectively, matrixand vector-functions with bounded variations components on the every closed interval from $I_{t_{0}} ; H=\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ is an arbitrary diagonal matrix-functions with continuous diagonal elements $\left.h_{i}: I_{t_{0}} \rightarrow\right] 0,+\infty[(i=1, \ldots, n)$.

The singularity is considered in the sense that A or f maybe have non-bounded total variation on the whole interval I.

We assume that $\operatorname{det}\left(I_{n} \pm d_{j} A(t)\right) \neq 0$ for $t \in I_{t_{0}}(j=1,2)$, where I_{n} is the identity $n \times n$-matrix, $d_{1} A(t)=A(t)-A(t-), d_{2} A(t)=A(t+)-A(t)$. A vector function $x \in$ $\mathrm{BV}_{\text {loc }}\left(\left[a, b\left[; R^{n}\right)\right.\right.$ is said to be a solution of the generalized system (1) if

$$
x(t)-x(s)=\int_{s}^{t} d A(\tau) \cdot x(\tau)+f(t)-f(s) \text { for } s, t \in I_{t_{0}}, \quad s<t<b
$$

where the integral is understand in the Kurzweil-Stieltjes integral sense (see [1]).
Let x_{0} be the unique solution of the problem (1), (2).
Along with the system (1) consider the sequence of the systems

$$
\begin{equation*}
d x=d A_{k}(t) \cdot x+d f_{k}(t) \text { for } t \in I_{t_{0}} \quad(k=1,2, \ldots,), \tag{3}
\end{equation*}
$$

where the matrix- and vector-functions A_{k} and $f_{k}(k=1,2, \ldots)$ have the properties circumscribed above.

There are considered the question about the sufficient conditions guaranteing the unique solvability of the singular problem (3), (2) for any sufficiently large natural k and for so called the H-converge of its solutions $x_{k}(k=1,2, \ldots)$ to x_{0} as $k \rightarrow+\infty$, i.e.

$$
\lim _{k \rightarrow+\infty}(H(t))\left(x_{k}(t)-x_{0}(t)\right)=0 \text { uniformly for } t \in I_{t_{0}}
$$

The analogous problem has been investigated in [2] for systems of ordinary differential equations.

References

[1] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter. (Russian) Czechoslovak Math. J. 7 (82) (1957), 418-449.
[2] I. T. Kiguradze, On a singular Cauchy problem for systems of linear ordinary differential equations. (Russian) Differ. Uravn. 32 (1996), no. 2, 171-179; translation in Differential Equations 32 (1996), no. 2, 173-180.

On Compatible Group Topologies on LCA Groups

Lydia Aussenhofer
University of Passau, Passau, Germany
email: lydia.aussenhofer@uni-passau.de

The topology on a LCA group G is the finest locally quasi-convex group topology which gives rise to the character group G^{\wedge} while the Bohr topology $\sigma\left(G, G^{\wedge}\right)$ is the coarsest topology with this property. For compact abelian groups both topologies coincide. A locally quasi-convex group topology is called compatible with the original topology if it has the same character group.

In the talk concrete examples for compatible topologies on $\mathbb{R}, \mathbb{Z}, \mathbb{Z}\left(p^{\infty}\right)$ and on infinite products of discrete abelian groups will be given. Further, some properties of the poset $\mathcal{C}(G)$ of all compatible group topologies on G will be presented. If G is an infinite product of discrete groups, then $|\mathcal{C}(G)|=2^{2^{|G|}}$ is as big as possible, and $|\mathcal{C}(\mathbb{R})|=\mathfrak{c},|\mathcal{C}(\mathbb{Z})|=\mathfrak{c}$, and $\left|\mathcal{C}\left(\mathbb{Z}\left(p^{\infty}\right)\right)\right|=\mathfrak{c}$ hold.

References

[1] L. Außenhofer, D. Dikranjan, E. Martín-Peinador, Locally quasi-convex compatible topologies on a topological group. Axioms 2015, no. 4(4), 436-458.
[2] L. Außenhofer, D. Dikranjan, Locally quasi-convex compatible topologies on LCA groups. Preprint.

Analysing Drug Therapy on the Interaction Between Tumor and Immune Cells Based on Fractional Differential Equations, and Optimal Control Theory

Mahin Azizi karachi, Alireza Fakharzadeh, Esmail Hesameddini
Department of Mathematical Sciences, Shiraz University of Technology
Modarres Bolvd, Shiraz, Iran
email: reihane.azizi00@gmail.com

A primary motivation in producing any mathematical model is to describe a natural or artificial phenomenon by means of a model equation whose behavior is as close as possible
to the original phenomenon. But this is often difficult, particularly when we are dealing with nonlinear behavior in natural complex phenomena such as the interaction between variety of cancers and immune cells. In this article, we have used fractional myelogenous leukemia blood cancer's cells against naive T-cell and effective T-cell cells of body. Using this model, we have studied the dynamic behavior describing the transaction between bodies' effective T cell, naive T cell and chronic myelogenous leukemia in one side and drug in other side. The most important feature of the equations with fractional order derivatives is their non-localization. We expect that our fractional differential equations model will be superior to its ordinary differential equations counterpart in facilitating understanding of the natural immune interactions to tumor and of the detrimental sideeffects which chemotherapy may have on a patient's immune system. Using this system, we will study the optimized drug dose in chronic myelogenous leukemia treatment with two methods namely targeted therapy and broad cytotoxic therapy.

Even the drug dose is important for cancer specialists, the weakness of immunology system in cancer affected patients, may results in additional problems for their body. Our goal is to find the best treatment regimens that minimize the cancer cell count and the deleterious effect of the drugs for a given patint. We examine the optimal control setting analytically, and include numerical solutions to illustrate the optimal regimens under various assumptions.

References

[1] H. Moore, N. K. Li, A mathematical model of chronic myelogenous leukemia (CML) and T cell interaction. J. Theoret. Biology, 2007, 513-523.
[2] L. G. De Pillis, W. Radunskaya, Mixed immunotherapy and chemotherapy of tumors modeling, applications and biological interpretations. J. Theoret. Biology, 2006, 841-862.
[3] S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade, H. I. Freedman, A mathematical model for the effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy. Nonlinear Anal. Real World Appl. 14 (2013), no. 1, 815-828.
[4] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51 (2006), no. 910, 1367-1376.

On Deviations Between Kernel Type Estimators of a Distribution Density in $p \geq 2$ Independent Samples

Petre Babilua, Elizbar Nadaraya
I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: petre.babilua@tsu.ge; elizbar.nadaraya@tsu.ge

Let $X^{(i)}=\left(X_{1}^{(i)}, \ldots, X_{n_{i}}^{(i)}\right), i=1, \ldots, p$, be independent samples of size $n_{1}, n_{2}, \ldots, n_{p}$, from $p \geq 2$ general populations with distribution densities $f_{1}(x), \ldots, f_{p}(x)$. It is based on sample $X^{(i)}, i=1, \ldots, p$, checking two hypotheses: the homogeneity hypothesis H_{0} : $f_{1}(x)=\cdots=f_{p}(x)$ and the goodness-of-fit hypothesis $H_{0}^{\prime}: f_{1}(x)=\cdots=f_{p}(x)=f_{0}(x)$, where $f_{0}(x)$ is the completely defined density function. The density $f_{0}(x)$ is unknown.

Here the tests are constructed for the hypotheses H_{0} and H_{0}^{\prime} against the sequence of close alternatives: $H_{1}: f_{i}(x)=f_{0}(x)+\alpha\left(n_{0}\right) \varphi_{i}(x), \alpha\left(n_{0}\right) \rightarrow 0, n_{0}=\min \left(n_{1}, \ldots, n_{p}\right) \rightarrow$ $\infty, \int \varphi_{i}(x) d x=0, i=1, \ldots, p$. The test for the hypotheses H_{0} and H_{0}^{\prime} based on the statistic

$$
\begin{equation*}
T\left(n_{1}, n_{2}, \ldots, n_{p}\right)=\sum_{i=1}^{p} N_{i} \int\left[\widehat{f}_{i}(x)-\frac{1}{N} \sum_{j=1}^{p} N_{j} \widehat{f}_{j}(x)\right]^{2} r(x) d x \tag{1}
\end{equation*}
$$

where $\widehat{f}_{i}(x)$ is a kernel-type Rosenblatt-Parzen estimator of the density of the function $f_{i}(x)$:

$$
\widehat{f}_{i}(x)=\frac{a_{i}}{n_{i}} \sum_{j=1}^{n_{i}} K\left(a_{i}\left(x-X_{j}^{(i)}\right)\right), \quad N_{i}=\frac{n_{i}}{a_{i}}, \quad N=N_{1}+\cdots+N_{p} .
$$

We consider the question concerning the limiting law of the distribution of statistic (1) for the hypothesis H_{1} when n_{i} tends to infinity so that $n_{i}=n k_{i}$, where $n \rightarrow \infty$, and k_{i} are constants. Let $a_{1}=a_{2}=\cdots=a_{p}=a_{n}$, where $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
(i) $K(x) \geq 0$, vanishes outside the finite interval $(-A, A)$ and, together with its derivatives, is continuous on this interval or absolutely continuous on $(-\infty, \infty), x^{2} K(x)$ is integrable and $K^{(1)}(x) \in L_{1}(-\infty, \infty)$. In both cases $\int K(x) d x=1$.
(ii) The density function $f_{0}(x)$ is bounded and positive on $(-\infty, \infty)$ or it is bounded and positive in some finite interval $[c, d]$. Besides, in the domain of positivity it has a bounded derivative.
(iii) Functions $\varphi_{j}(x), j=1, \ldots, p$, are bounded and have bounded derivatives of first order; also $\varphi_{i}(x) \in L_{1}(-\infty, \infty)$.
(iv) The weight function $r(x)$ is piecewise-continuous, bounded and $r(x) \in L_{1}(-\infty, \infty)$.

Theorem. Let the conditions (i)-(iv) be fulfilled. If $\alpha_{n}=n^{-1 / 2} a_{n}^{1 / 4}\left(\alpha_{n}=\alpha\left(n_{0}\right)\right)$, $n^{-1} a_{n}^{9 / 2} \rightarrow 0$ as $n \rightarrow \infty$, then for the hypothesis H_{1} the random variable $a_{n}^{1 / 2}\left(T_{n}-\mu\right)$ has the normal limiting distribution $\left(A(\varphi), \sigma^{2}\right)$, where

$$
\begin{gathered}
A(\varphi)=\sum_{i=1}^{p} k_{i} \int\left[\varphi_{i}(x)-\frac{1}{\bar{k}} \sum_{j=1}^{p} k_{j} \varphi_{j}(x)\right]^{2} r(x) d x \\
\sigma^{2}=2(p-1) \int f_{0}^{2}(x) r^{2}(x) d x \cdot R\left(K_{0}\right), K_{0}=K * K, \mu=(p-1) \int f_{0}(x) r(x) d x \cdot R(K), \\
R(g)=\int g^{2}(x) d x, \quad \bar{k}=k_{1}+\cdots+k_{p}, \quad p \geq 2 .
\end{gathered}
$$

Inquiry-Based Teaching in Mathematics

Petre Babilua ${ }^{1,2}$, Mzevinar Patsatsia ${ }^{3}$
${ }^{1}$ Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ European School, Tbilisi, Georgia
email: p_babilua@yahoo.com
${ }^{3}$ Sokhumi State University, Tbilisi, Georgia
email: mzevip54@mail.ru

In the present talk is considered inquiry-based teaching in mathematics. Is considered the concept and basic steps for inquiry-based teaching in mathematics. In the given case is considered the using of electronic tools as research resource. These resources are: GeoGebra, Desmos/calculator, Microsoft Mathematics and etc. Also are considered particular specific examples in mathematics which leads to the inquiry. Also are considered examples of project based and problem based teaching in mathematics.

Non-Linear Versions of Characteristic Problems for the Second Order PDEs of Mixed Type

Giorgi Baghaturia ${ }^{1}$, Marina Menteshashvili ${ }^{1,2}$
${ }^{1} \mathrm{~N}$. Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
${ }^{2}$ Sokhumi State University, Tbilisi, Georgia
email: nogela@gmail.com; m.menteshashvili@gtu.ge

We consider some specific second order PDEs. These equations are of hyperbolic type, but may degenerate under some known conditions for the derivatives of unknown solution. Our previous results include the construction of general integrals for these equations. Based on those results, we consider a non-linear version of Goursat characteristic problem ([1], [2]). In the case of this Characteristic problem, the sufficient conditions for existence and uniqueness of the solution are established. There is also defined a domain of definition of the solution. Another characteristic problem we investigated belongs to a class of so called non-local characteristic problems ([3]). The existence and uniqueness of a regular solution is proved also in this case.

References

[1] J. Gvazava, The mean value property for nonstrictly hyperbolic second order quasilinear equations and the nonlocal problems. Proc. A. Razmadze Math. Inst. 135 (2004), 79-96.
[2] G. Baghaturia, Nonlinear versions of hyperbolic problems for one quasi-linear equation of mixed type. Sovrem. Mat. Prilozh. No. 90 (2014); translation in J. Math. Sci. (N.Y.) 208 (2015), no. 6, 621-634.
[3] M. Menteshashvili, The investigation of a nonlinear characteristic problem by using analogues of Riemann invariants. Proc. A. Razmadze Math. Inst. 160 (2012), 113-120.

On Addition Formulas Related to Elliptic Genera

Malkhaz Bakuradze
Department of Algebra and Geometry, I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: malkhaz.bakuradze@tsu.ge

We provide certain addition formulas for the logarithm of the universal Buchstaber formal group law and for the general elliptic integrals with four parameters having a differential $d t / d R(t)$, where $R(t)$ is a polynomial of degree 4 . Our results specialize in Euler's addition theorems for elliptic integrals of the first and second kind.

References

[1] M. Bakuradze, V. V. Vershinin, CNRS PICS project 04/02, 2017.

On Axiomatic Characterization of Bifunctor Homology Theory in the sense of Hu

Vladimer Baladze, Zviad Giorgadze
Batumi Shota Rustaveli State University, Batumi, Georgia
email: vbaladze@gmail.com; zviadi_giorgadze@mail.ru

Bifunctor homology theory first axiomatized by H. Inassaridze [6] in terms of relative homology groups, the induced homomorphisms and the boundary homomorphisms.

In the paper we define bifunctor homology theory in the sense of Hu on the category Comp of compact Hausdorff spaces with coefficient in the abelian category G. G. Chogoshvili projective homology theory [3] with coefficient in the category of abelian groups in the bifunctor homology theory.

The aim of the paper is to construct axiomatic theory of bifunctor homology theory in the sense of Hu without using relative homology groups. Our axiomatic characterization is simpler and instead of Eilenberg-Steenrod axioms [5] uses the Hu's axioms formulated in terms of absolute groups, the induced homomorphisms, and the suspension isomorphism.

The main result of paper is following
Theorem 1. There exists one and only one exact bifunctor homology theory on the category Comp with the coefficients in the category of the abelian groups witch satisfies the
axioms of homotopy, suspension, dimension, and continuity for every infinitely divisible groups.

The proof of this theorem is based on results of [6] and ([1], [4]).

References

[1] V. Baladze, Fiber shape theory. Proc. A. Razmadze Math. Inst. 132 (2003), 1-70.
[2] V. Baladze, On homology and shape theories of compact Hausdorff spaces. III International Conference of the Georgian Mathematical Union. Book of Abstracts, pp. 82-83, September 2-9, Batumi, Georgia, 2012.
[3] G. Chogoshvili, On the homology theory of topological spaces. Mitt. Georg. Abt. Akad. Wiss. USSR [Soobshchenia Gruzinskogo Filiala Akad. Nauk SSSR] 1 (1940), 337-342.
[4] S.-T. Hu, On axiomatic approach to homology theory without using the relative groups. Portugal. Math. 19 (1960), 211-225.
[5] S. Eilenberg, N. Steenrod, Foundations of algebraic topology. Princeton University Press, Princeton, New Jersey, 1952.
[6] H. Inassaridze, On the Steenrod homology theory of compact spaces. Michigan Math. J. 38 (1991), no. 3, 323-338.

Initiating a New Trend in Complex Equations Studying Solutions in a Given Domain: Problems, Approaches, Results

G. Barsegian
Institute of Mathematics of Academy of Sciences of Armenia Erevan, Armenia
email: barseg@instamath.sci.am

There is a huge number of investigations in complex differential equations when the solutions are meromorphic in the complex plane. The main attention was paid to the value distribution type phenomena of the solutions, particularly to the zeros (more generally to the a-points) of these solutions.

Meantime there are very few studies of meromorphic solutions in a given domain, particularly zeros of similar solutions weren't touched at all.

We initiate studies of meromorphic solutions in a given complex domain: we pose some new problems and give some approaches for their solutions.

Clearly for similar studies we should have some tolls that are valid for large classes of functions in a domain. As some tools we make use results related to three comparatively recent topics, Gamma-lines, proximity property and universal version of value distribution theory; all they are valid for any meromorphic function in a given domain.

Acknowledgement. The work was supported by Marie Curie International Award (of Euro union) and by position of Visiting Leading Professor (in China).

The Influence of the Inclusion on the Buckling Plate

Svetlana M. Bauer, Stanislava V. Kashtanova, Nikita F. Morozov
Saint Petersburg State University, Sankt-Peterburg, Russia
email: kastasya@yandex.ru

The paper deals with the problem of the local buckling caused by uniaxial stretching of an infinite plate with a circular inclusion from a different material. The effect of elastic modulus of the inclusion on the value of the critical load is investigated. In order to find the first critical load a variational principle is applied. The comparison of numerical results that were obtained in the Maple 18 and the results obtained by the finite element method in the ANSYS 13.1. The influence is analysed the ratio of the elastic properties of the inclusion and plate on the value of the critical load and the form of the loss of stability.

Suppose that: E_{1}, ν_{1} - are Young's modulus and Poison's ratio of the plate, and E_{2}, ν_{2} - parameters of the inclusion. R - radius of the inclusion, and x, y Cartesian coordinates. The plate is presented in Figure 1.

The stresses act along the y axis. Let us denote the stress field inside the inclusion as $\sigma_{x x}=k_{x} \sigma$ and $\sigma_{y y}=k_{y} \sigma$, where k_{x} and k_{y} are the coefficients which were defined in [1] and these coefficients are responsible for the relationship between the elastic modulus of the insert and the plate.

The first critical load that causes the loss of stability can be evaluated with the use of the energy method customized by Timoshenko and Ritz. Figure 2 shows the dependence of the critical load on the ratio between the modulus of the inclusion and plate (σ_{0} is the critical load corresponding to the plate with a hole of radius R). Calculations show that the loss of stability of a plate with a circular rigidly fixed inclusion happens at lower loads when the modulus of elasticity of the inclusion is either much smaller than the plate (i.e. the inclusion is very "soft") or, conversely, much larger (i.e., inclusion very "tough").

Figure 1. Plate with a Circular Inclusion Under Tensile Stress

Figure 2. Dependence of the critical load on the ratio of the inclusion module to the plate module

References

[1] Ye. Ye. Deryugin, G. V. Lasko, Field of stresses in an isotropic plane with circular inclusion under tensile stresses. In Engineering, 41 (2012), 583-589.

Soft Countable Topological Spaces

Sadi Bayramov ${ }^{1}$, Cigdem Gunduz Aras ${ }^{2}$, Vefa Cafarli ${ }^{3}$

${ }^{1}$ Department of Algebra and Geometry, Baku State University, Baku, Azerbaijan email: baysadi@gmail.com
${ }^{2}$ Department of Mathematics, Kocaeli University, Kocaeli, Turkey
email: caras@kocaeli.edu.tr
${ }^{3}$ Department of Algebra and Geometry, Baku State University, Baku, Azerbaijan email: ceferli_vefa@mail.ru

In 1999, Russian researcher Molodtsov proposed the new concept of a soft set which can be considered as a new mathematical approach for vagueness. Soft topological spaces have been studied by some authors in recent years.

The purpose of this paper is to investigate some concepts of soft topological spaces. We give some new concepts in soft topological spaces such as soft first-countable spaces, soft second-countable spaces and soft separable spaces, soft sequential continuity and some important properties of these concepts are investigated.

References

[1] D. Molodtsov, Soft set theory-first results. Global optimization, control, and games, III. Comput. Math. Appl. 37 (1999), no. 4-5, 19-31.
[2] M. Shabir, M. Naz, On soft topological spaces. Comput. Math. Appl. 61 (2011), no. 7, 1786-1799.
[3] S. Bayramov, C. Gunduz (Aras), Soft locally compact and soft paracompact spaces. J. Math. System Sci. 3 (2013), no. 3, 122-130.

Questions of Existence of Periodic Solutions for Functional-Differential Equations of Pointwise Type

Levon A. Beklaryan
Central Economics and Mathematics Institute, Moscow, Russia
lbeklaryan@outlook.com

The report is devoted to the existence of periodic solutions for ordinary differential equations, as well as for functional differential equations of pointwise type with quasilinear right sides. The developed approach is based on taking into account the asymptotic properties of the solutions of differential equations that were not taken into account in the study of periodic solutions, since we considered restrictions of such equations to an interval equal to the period. Such conditions for the existence of a periodic solution obtained on the basis of the study of the action of the shift operator, but taking into account its asymptotic properties, are new even for ordinary differential equations and essentially expand the class of non-autonomous ordinary differential equations for which this approach is applicable.

Triangulation of Polyhedra and Their Applications

Shalva Beriashvili
Department of Mathematics, Georgian Technical university Tbilisi, Georgia
email: shalva_89@yahoo.com

In our presentation we consider one of the most important topic of combinatorial geometry - triangulation of polyhedrons. It is well known that triangulation have a many applications in various branch of mathematics and not only in mathematics but also in other fields of sciences such, that Geodesy, Bibliography, Research of Design, Modern Technology, Engineering, Navigation, Meteorology, Astrometry, Developing of Arms and so on. Algorithmic study of triangulations was founded in the 70th years in XX century (see [1], [2]).

The goal of presented topic is study the various problems connected to the triangulation of polyhedrons in three dimensional Euclidean space, and their applications in the various fields of mathematics, in particular in the study of mathematical education. More precisely, in \mathbf{R}^{2} plane it is workable (possible) to calculate the number of triangulation of polygons, but similar question in $\mathbf{R}^{\mathbf{3}}$ space is more difficult (see [3]).

In particular, in three dimensional Euclidean space during triangulation of convex polyhedron we lose some invariants, such that number of diagonals, number of tetrahedrons and so on. The presentation is an interdisciplinary topic. We investigate application of algebraic or geometrically structures, algorithms and methodology of theory of graphs to computational geometry.

References

[1] G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition. in: Automata theory and formal languages (Second GI Conf., Kaiserslautern, 1975), pp. 134-183. Lecture Notes in Comput. Sci., Vol. 33, Springer, Berlin, 1975.
[2] A. B. Kharazishvili, Elements of combinatorial geometry. Georgian National Academy of Sciences, Tbilisi, 2016.
[3] F. P. Preparata, S. J. Hong, Convex hulls of finite sets of points in two and three dimensions. Comm. ACM 20 (1977), no. 2, 87-93.

On the Axiomatic Systems of Steenrod Homology Theory of Compact Spaces

Anzor Beridze ${ }^{1}$, Leonard Mdzinarishvili ${ }^{2}$
${ }^{1}$ Batumi Shota Rustaveli State University, Batumi, Georgia
email: a.beridze@bsu.edu.ge
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia
email: l.mdzinarishvili@gtu.ge

The Steenrod homology theory on the category of compact metric pairs was axiomatically described by J.Milnor. In [6] the uniqueness theorem is proved using the EilenbergSteenrod axioms and as well as relative homeomorphism and clusres axioms. J. Milnor constructed the homology theory on the category $\mathbf{T o p}_{\mathbf{C}}^{2}$ of compact Hausdorff pairs and proved that on the given category it satisfies nine axioms - the Eilenberg-Steenrod, relative homeomorphis and cluster axioms (see Theorem 5 in [6]). Besides, he proved that constructed homology theory satisfies partial continuity property on the subcategory $\mathbf{T o p}_{\mathbf{C M}}^{2}$ (see Theorem 4 in [6]) and the universal coefficient formula on the category $\mathbf{T o p}_{\mathbf{C}}^{2}$ (see Lemma 5 in [6]). On the category of compact Hausdorff pairs, different axiomatic systems were proposed by N. Berikashvili [1], [2], H. Inassaridze and L. Mdzinarishvili [4], L. Mdzinarishvili [5] and H.Inasaridze [3], but there was not studied any connection between them. The paper studies this very problem. In particular, in the paper it is proved that any homology theory in Inassaridze sense is the homology theory in the Berikashvili sense, which itself is the homology theory in the Mdzinarishvili sense. On the other hand, it is shown that if a homology theory in the Mdzinarishvili sense is exact functor of the second argument, then it is the homology in the Inassaridze sense.

Acknowledgement. The authors are supported by grant FR/233/5-103/14 from Shota Rustaveli National Science Foundation (SRNSF).

References

[1] N. A. Berikashvili, The Steenrod-Sitnikov homology theory on the category of compact spaces. (Russian) Dokl. Akad. Nauk SSSR 254 (1980), no. 6, 1289-1291.
[2] N. A. Berikashvili, Axiomatics of the Steenrod-Sitnikov homology theory on the category of compact Hausdorff spaces. (Russian) Topology (Moscow, 1979). Trudy Mat. Inst. Steklov. 154 (1983), 24-37.
[3] H. Inassaridze, On the Steenrod homology theory of compact spaces. Michigan Math. J. 38 (1991), no. 3, 323-338.
[4] H. N. Inasaridze, L. D. Mdzinarishvili, The interconnection between continuity and exactness in homology theory. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 99 (1980), no. 2, 317-320.
[5] L. D. Mdzinarishvili, On homology extensions. Glas. Mat. Ser. III 21(41) (1986), no. 2, 455-482.
[6] J. Milnor, On the Steenrod homology theory. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), 79-96, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995.

Completely \oplus-Supplemented Lattices

Çiğdem Biçer, Celil Nebiyev

Department of Mathematics, Ondokuz Mayıs University, 55270 Kurupelit-Atakum, Samsun, Turkey
email: cigdem_bicer184@hotmail.com; nebiyev@omu.edu.tr

In this work, all lattices are complete modular lattices. Let L be a lattice. If every quotient sublattice $a / 0$ such that a is a direct summand of L is \oplus-supplemented, then L is called a completely \oplus-supplemented lattice. In this work, some properties of these lattices are investigated.

Proposition 1. Every complemented lattice is completely \oplus-supplemented.
Corollary 2. Let L be a supplemented lattice with $r(L)=0$. Then L is completely \oplus-supplemented.
Proposition 3. Let L be a lattice with ($D 1$) property. Then L is completely \oplus-supplemented.

Proposition 4. Let L be a lattice with (D3) property. Then L is completely \oplus-supplemented.

2010 Mathematics Subject Classification: 06C05, 06C15.
Key words: Lattices, small elements, supplemented lattices, complemented lattices.

References

[1] R. Alizade and S. E. Toksoy, Cofinitely supplemented modular lattices. Arab. J. Sci. Eng. 36 (2011), no. 6, 919-923.
[2] Ç. Biçer and C. Nebiyev, \oplus-supplemented lattices. Presented in Antalya Algebra Days XVIII, Şirince-İzmir-Türkiye, 2016.
[3] G. Călugăreanu, Lattice concepts of module theory. Kluwer Texts in the Mathematical Sciences, 22. Kluwer Academic Publishers, Dordrecht, 2000.
[4] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules. Supplements and projectivity in module theory. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
[5] A. Harmancı, D. Keskin, P. F. Smith, On \oplus-supplemented modules. Acta Math. Hungar. 83 (1999), no. 1-2, 161-169.

An Ontology Model for a Tourism Web Portal

Anriette Bishara
International Black Sea University, Tbilisi, Georgia
email: anriettehazem@yahoo.com

In the talk we present an ontology model of a semantic web portal, based on the Description Logics. A semantic web portal is a web page, based on semantic web technologies, where human readable information is accompanied by machine readable information, usually written in ontologies. The topic of our web portal is tourism in Georgia, where user can automatically plan trips (the places to visit in Georgia) based on his budget,
length of visit and some other criteria. To the best of our knowledge, there is no such automated system exists so far.

On the Solutions of Elastic Materials with Voids

Lamara Bitsadze
Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: lamarabitsadze@yahoo.com

In this paper the 2D quasi-static theory of elasticity for materials with voids is considered. The representation of regular solution of the system of equations in the considered theory is obtained. There the fundamental and some other matrixes of singular solutions are constructed in terms of elementary functions.

References

[1] D. Ieşan, A theory of thermoelastic materials with voids. Acta Mechanica 60 (1986), no. 1, 67-89.
[2] L. Bitsadze, The Dirichlet BVP of the theory of thermoelasticity with microtemperatures for microstretch sphere. J. Thermal Stresses 39 (2016), no. 9, 1074-1083.
[3] A. Pompei, A. Scalia, On the steady vibrations of elastic materials with voids. J. Elasticity 36 (1994), no. 1, 1-26.

The Cauchy Problem for the Equation Describing Hydrodynamic Processes in Magnetohydraulic Pusher
Rusudan Bitsadze, Simon Bitsadze
Georgian Technical University, Tbilisi, Georgia
email: bitsadze.r@gmail.com

The work proposes the initial Cauchy problem for the equation describing hydrodynamic processes in the magnetohydraulic pusher of an original construction. There is shown the uniqueness of solution, which is written in the explicit form and its domain of propagation is established.

References

[1] R. Bitsadze, S. Bitsadze, Mathematical modeling of hydraulic processes when attracting to the core of anchor-piston of magnetohydraulic pusher. Scientific-Technical Journal "Transport and Machine Building", 2017, no. 2.
[2] R. Bitsadze, Mixed characteristic problem for a nonlinear oscillation equation. Sovrem. Mat. Prilozh. No. 89 (2013); translation in J. Math. Sci. (N.Y.) 206 (2015), no. 4, 329-340.

The System of Mathematical Tasks Solving by Using the Method of Area

Mamuli Butchukhishvili
Department of Teaching Methods, Akaki Tsereteli State University Kutaisi, Georgia
email: mbuchukhishvili@yahoo.com
Different kinds of tasks are given in the modern books. During their solving less attention is paid to the psychological factors affecting mathematics. In this case, we offer the solution of the mathematical tasks by using the method of area.

Osculating Directional Curves of Non-Lightlike Curves in Minkowski 3-Space

Ali Cakmak 1, Semra Yurttancikmaz ${ }^{2}$, Sezai Kiziltug ${ }^{3}$

${ }^{1}$ Department of Mathematics, Faculty of Science Bitlis Eren University, Bitlis, Turkey email: acakmak@beu.edu.tr
${ }^{2}$ Department of Mathematics, Faculty of Science Atatürk University, Erzurum, Turkey email: semrakaya@atauni.edu.tr
${ }^{3}$ Department of Mathematics, Faculty of Science Erzincan University, Erzincan, Turkey email: skiziltug@erzincan.edu.tr

In this study, we introduce the notion of osculating directional curve and osculating donor curve of the non-lightlike Frenet curve in the Minkowski 3 -space E_{1}^{3} and give some characterizations and results for these curves.

References

[1] A. T. Ali, R. López, Slant helices in Minkowski space \mathbf{E}_{1}^{3}. J. Korean Math. Soc. 48 (2011), no. 1, 159-167.
[2] J. H. Choi, Y. H. Kim, A. T. Ali, Some associated curves of Frenet non-lightlike curves in \mathbb{E}_{1}^{3}. J. Math. Anal. Appl. 394 (2012), no. 2, 712-723.
[3] W. Kühnel, Differential geometry: curves, surfaces, manifolds. American Mathematical Society, Providence, RI, 2006.
[4] B. O'Neill, Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics, 103. Academic Press, New York-London etc., 1983.

Computer Modeling of Process of Two-Level Assimilation

Maia Chakaberia
Faculty of Mathematics and Computer Sciences, Sokhumi State University Tbilisi, Georgia
email: chakaberiam@gmail.com

In work numerical results of computer modeling of earlier offered mathematical model of process of two-level assimilation in case of constancy of all parameters of model are given [1]-[3].

In a numerical experiment demographic factor of the first side is negative, the third is positive, and demographic factor of the second side is taken both positive and negative. The numerical experiment shows that required functions have periodic character, at the same time the function defining the third side which is under double assimilation accepts positive values.

As a result of computer modeling of process of two-level assimilation it is shown that if indicators of demographic factor, assimilation coefficients, initial values of required functions are taken from some intervals, then there is no full assimilation of the third side (state formation, autonomy).

References

[1] T. Chilachava, Nonlinear mathematical model of the two-level assimilation. VI International Conference of the Georgian Mathematical Union, Book of Abstracts, pp. 94-95, July 12-16, Batumi, Georgia, 2015.
[2] T. Chilachava, M. Chakaberia, Mathematical modeling of nonlinear processes of two-level assimilation. Georgian Electronic Scientific Journal: Computer Science and Telecommunications 3 (49) (2016), 34--48.
[3] T. Chilachava, M. Chakaberia, About some decisions of nonlinear system of thedifferential equations describing process of two-level assimilation. VII International Conference of the Georgian Mathematical Union, Book of Abstracts, pp. 103-104, Batumi, Georgia, 2016.

Mathematical Model of Information Warfare with System of Linear Partial Differential Equations

Temur Chilachava
Faculty of Mathematics and Computer Sciences, Sokhumi State University Tbilisi, Georgia
email: temo_chilachava@yahoo.com

In work in development of earlier considered model of information warfare with participation two confronting and the third peacekeeping the sides [1]-[3], with flows of information depending only on time the new mathematical model of information warfare, where flows of information of all three sides depend both on a time and on the second "geometrical" variable characterizing the level of development of technology of information transfer is offered.

The mathematical model is described by an initial-boundary task for system of three linear differential equations in partial derivatives, and the task is considered in some closed rectangle of the first quarter of the plane of two independent variables, and on the left end of a segment of change of a "geometrical" variable homogeneous conditions of Dirichlet are given.

In some special case of constants of model, for the third peacekeeping side, the parabolic differential equation in partial derivatives of the second order with the corresponding initial and boundary conditions is received. Some exact decisions are received.

References

[1] T. Chilachava, N. Kereselidze, Mathematical modeling of the information warfare. Georgian Electronic Scientific Journal: Computer Science and Telecommunications 1 (24) (2010), 78-105.
[2] T. Chilachava, N. Kereselidze, Optimizing problem of mathematical model of preventive information warfare. Informational and Communication Technologies Theory and Practice: Proceedings of the International Scientific Conference ICTMC2010, pp. 525-529, Nova, USA, 2011.
[3] T. Chilachava, A. Chakhvadze, Continuous nonlinear mathematical and computer model of information warfare with participation of authoritative interstate institutes. Georgian Electronic Scientific Journal: Computer Science and Telecommunications 4 (44) (2014), 53-74.

Nonlinear Mathematical Model of Transformation of Two-Party Elections to Three-Party Elections

Temur Chilachava

Faculty of Mathematics and Computer Sciences, Sokhumi State University Tbilisi, Georgia
email: temo_chilachava@yahoo.com

In work the new nonlinear mathematical model of transformation of two-party elections to three-party elections is offered. In model it is supposed that two parties participated in the previous elections and as a result of elections one of parties became pro-governmental and the second oppositional. Before the following elections to political arena there is the second opposition party and on the subsequent elections two oppositional and one pro-governmen-tal parties already participate.

In that special case, when demographic factor of elections for all three parties is equal to zero, coefficients of involvement of voters are constant, but are excellent during the periods of two-party membership and three-party membership, Cauchy's task in the first interval for system of two, and in the second interval of three nonlinear differential equations is solved analytically exactly. Taking into account indicators of appearances at the next elections of all three parties supporting voters, certain falsifications of voices of opposition parties, necessary conditions for a victory of pro-government party are found. The found exact analytical solutions allow all three parties to select strategy for a win of elections.

Mathematical Model of Interference of Fundamental and Applied Researches

Temur Chilachava ${ }^{1}$, Tsira Gvinjilia ${ }^{2}$
${ }^{1}$ Faculty of Mathematics and Computer Sciences, Sokhumi State University Tbilisi, Georgia
email: temo_chilachava@yahoo.com
${ }^{2}$ Department of Exact and Natural Sciences, Batumi State Maritime Academy Batumi, Georgia
email: Gvinjilia1959@mail.ru

In work the new nonlinear continuous mathematical model of interference of fundamental and applied researches of scientifically-research institute (micro-model) is considered. For a special case, Cauchy's problem for nonlinear system of differential equations of first order is definitely decided analytically. In more general case based on Bendikson's criteria the theorem of not existence in the first quarter of the phase plane of solutions of closed integral curves is proved. Conditions on model parameters in case of which existence of limited solutions of system of nonlinear differential equations is possible are found.

The offered nonlinear mathematical model allows to estimate influence of fundamental and applied researches (works) at each other, to find conditions on constant models in case of which there can be limited solutions, i.e. closed integral curves in the first quadrant of the phase plane of solutions.

Nonlinear Two or Three-Stage Mathematical Model of Training of Scientists

Temur Chilachava ${ }^{1}$, Tsira Gvinjilia ${ }^{2}$
${ }^{1}$ Faculty of Mathematics and Computer Sciences, Sokhumi State University Tbilisi, Georgia
email: temo_chilachava@yahoo.com
${ }^{2}$ Department of Exact and Natural Sciences, Batumi state Maritime Academy Batumi, Georgia
email: Gvinjilia1959@mail.ru

In work it is offered two or three-stage nonlinear mathematical model of training of research associates (scientists). In two-level model two subjects are considered: research
associates without degree and the diplomaed scientists with doctor's degree, and in threestage model - three subjects: research associates without degree, candidates of science and the diplomaed scientists with doctor's degree. For system of two or three nonlinear differential equations Cauchy's task is set. The mathematical model describes process of self-reproduction of research associates (preparation), their irreversible exit or transition from one category to another.

The two-level model actually comes down to the known model "the victim" (research associates without degree) - "a predator" (scientists with doctor's degree) taking into account the intraspecific competition (members with self-limitation of increase). The system of the nonlinear differential equations in the first closed quarter of the phase plane of decisions has three provisions of balance, and the balance position corresponding to the trivial decision is a saddle at any values of parameters of model, the second position of balance corresponding to extinction of "predators" and to an equilibrium condition of "the victims" in one case is a saddle, and in the second-steady knot.

Conditions on constant models for which the stationary decision, the third position of balance in an open first quarter of the phase plane of decisions (the only limit point of system of the differential equations) corresponding to equilibrium coexistence of "predators" and "the victims" asymptotically is steady (steady knot or steady focus) are found.

Lack of periodic trajectories of system of the nonlinear differential equations is proved.

Simulation and Analysis of Some Non-Ordinary Atmosphere Processes by WRF Model Based on the GRID Technologies

Teimuraz Davitashvili
Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University Tbilisi, Georgia

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: teimuraz.davitashvili@tsu.ge

Regional scale summer time precipitations, among others (wind, temperature, sea level pressure, geopotential height etc.), still remain more difficult parameter for prediction by weather research forecast (WRF) model. This inconvenience mainly is stipulated by insufficient parameterization the resolved and subgrid-scale precipitation processes in the WRF model and by the lack in setting reliable initial and boundary conditions at nested grids of the WRF model. Furthermore, in comparison with cold-season precipitations,
warm-season convective events and precipitations are much more difficult for prediction and especially for the territories having complex orography. In this study the problem of micro physics and cumulus parameterization schemes options for several warm-season convective events predictions above the Caucasus territory is studied. With the purpose of investigating impact of detailed orography on summer time heavy showers prediction three set of domains with horizontal grid-point resolutions of 19.8, 6.6 and 2.2 km have been used. Computations were performed by Grid system with working nodes (16 cores+, 32GB RAM on each) situated at GE-01-GRENA. Some results of the numerical calculations performed by WRFv.3.6.1 model with different microphysics and convective scheme components are presented.

Acknowledgment. The research leading to these results has been co-funded by the European Commission under the H2020 Research Infrastructures contract no. 675121 (project VI-SEEM).

About Nonlocal Contact Problems

Tinatin Davitashvili ${ }^{1}$, Hamlet Meladze ${ }^{2,3}$
${ }^{1}$ Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: tinatin.davitashvili@tsu.ge
${ }^{2} \mathrm{~N}$. Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
${ }^{3}$ St. Andrew the First Called Georgian University, Tbilisi, Georgia
email: h_meladze@hotmail.com

The present work is devoted to the review of the articles, where for some equations of the mathematical physics the boundary and initial-boundary problems with nonlocal contact conditions are considered. For these problems, the existence and uniqueness of the solution is proved. The algorithms for numerical solution are constructed and investigated.

Some Issues of Data Sufficiency about Solving the Problem

Manana Deisadze, Vladimer Adeishvili
Department of Teaching Methods, Akaki Tsereteli State University Kutaisi, Georgia

email: manana.deisadze@atsu.edu.ge; vladimer.adeishvili@atsu.edu.ge

While studying math in school mathematics courses, the greatest attention is given to the task solving. The practice proved that most of the graduates of the school find it difficult to solve unknown tasks. Moreover, they are completely powerless in front of it. So that we think that quite more attention must be given to the task solving about data sufficiency. If the pupil is well aware of which condition is appropriate for the task to be solved and which is not, the content of the task is clear and the mathematical model of a verbal formulated task is created, it no longer be difficult. The problem is that pupils cannot understand the content of the text. In this paper, three types of task solving models about data sufficiency are proposed.

Some Issues of Teaching Division with Remainder in School Math Course

Manana Deisadze, Shalva Kirtadze
Department of Teaching Methods, Akaki Tsereteli State University Kutaisi, Georgia

email: manana.deisadze@atsu.edu.ge; shalva.kirtadze@atsu.edu.ge

Present work deals with the clear interpretation of the concept of division with remainders in the school math course and its relation with life problems. It is noteworthy that in certain books and on the internet we come across with incorrect clear interpretation of problems related to the division with a remainder. For a student this obstructs the correct consideration of the most serious math issue - division with remainder. The work presents analysis of the division with remainders in school math course, hence, its proper clear interpretation, which is very important to correctly consider the division with remainders.

The Boundary Value Problem for Some Class of Second Order Hyperbolic Systems

Giorgi Dekanoidze
Department of Mathematics, Georgian Technical University
Tbilisi, Georgia
email: ggdekanoidze@gmail.com

Darboux type problem with Dirichlet and Poincaré boundary conditions for one class of nonlinear second order hyperbolic systems is considered. The questions of existence and nonexistence, uniqueness and smoothness of global solution of this problem are investigated.

The case when the nonlinearity in the system is of an integral nature is considered also.

Scintillation Effects and the Spatial Power Spectrum of Scattered Radio Waves in the Ionospheric F Region

Mzia Diasamidze, Irma Takidze
Batumi State Maritime Academy, Batumi, Georgia
email: m.diasamidze@bsma.edu.ge; i.takidze@bsma.edu.ge

Differential equation for two-dimensional spectral function of the phase fluctuation is derived using the modify smooth perturbation method. Second order statistical moments of the phase fluctuations are calculated taking into account polarization coefficients of both ordinary and extraordinary waves in the turbulent collision magnetized plasma and the diffraction effects. Analytical and numerical investigations in the ionospheric F region are based on the anisotropic Gaussian and power law spectral functions of electron density fluctuations including both the field-aligned anisotropy and field-perpendicular anisotropy of the plasma irregularities. Scintillation effects in this region are investigated for the small-scale ionospheric irregularities. Splashes caused by strong phase fluctuations are revealed in the normalized scintillation level at 40 MHz incident wave. Increasing frequency from 30 MHz up to 40 MHz scintillation level decreases for both spectra. Phase structure function is calculated for arbitrary correlation function of electron density fluctuations. Varying anisotropy factor the angle of arrival in the principal plane than in perpendicular plane. The large-scale background plasma structures are responsible for
the "Double-Humped Effect" in the spatial power spectrum taking into account diffraction effects. This spectrum of scattered electromagnetic waves has two maximums if large scale plasma irregularities strongly elongated along the lines of forces of geomagnetic field. At fixed collision frequency the gap of the curve decreases two times increasing anisotropy factor four times. Estimations show that the this new effect exists even small scale plasma irregularities are oriented perpendicular to the external magnetic field. Numerical calculations are based on the experimental data of the navigation satellites.

On One Problem of Reduction

Besarion Dochviri, Vakhtang Jaoshvili, ZaZa Khechinashvili
Department of Mathematics, I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: besarion.dochviri@tsu.ge; vakhtangi.jaoshvili@gmail.com; khechinashvili@gmail.com

The problem of optimal stopping with incomplete data is reduced to the problem of optimal stopping with complete data. Let us consider the following model of KalmanBucy scheme [1]:

$$
\begin{gathered}
d \theta_{t}=a(t) \theta_{t} d t+\epsilon_{1} d w_{1}(t) \\
d \xi_{t}=d \theta_{t}+\epsilon_{2} d w_{2}(t), \quad 0 \leq t \leq T,
\end{gathered}
$$

where $\epsilon_{1}>0, \epsilon_{2}>0$ are constants, w_{1} and w_{2} are independent Wiener processes. It is assumed that θ is the nonobservable component and ξ is the observable one.

Let us define the following processes $m_{t}=E\left[\theta_{t} \mid \Im_{t}^{\xi}\right]$ and $\gamma_{t}=E\left(\theta_{t}-m_{t}\right)^{2}$. Let us introduce the payoff function [2]:

$$
S^{\epsilon_{1}, \epsilon_{2}}=\sup _{\tau \in \Re \not{ }^{\xi}} E \theta_{\tau},
$$

where supremum is taken over the class of stopping times \Re^{θ} (respectively \Re^{ξ}) with respect to the filtration $\Im_{t}^{\theta}=\sigma\left\{\theta_{s}: 0 \leq s \leq t\right\}$ (respectively $\Im_{t}^{\xi}=\sigma\left\{\xi_{s}: 0 \leq s \leq t\right\}$).
Theorem 1. For the payoff $S^{\epsilon_{1}, \epsilon_{2}}$ we have

$$
S^{\epsilon_{1}, \epsilon_{2}}=\sup _{\tau \in \Re \xi} E m_{\tau} .
$$

Theorem 2. The following representation is valid payoff $S^{\epsilon_{1}, \epsilon_{2}}$ we have

$$
S^{\epsilon_{1}, \epsilon_{2}}=\sup _{\tau \in \Re^{\theta}} E \widetilde{\theta}_{\tau},
$$

where

$$
\widetilde{\theta}_{t}=\Phi_{t}\left[\int_{0}^{t} \Phi_{s}^{-1} a(s) d s+\int_{0}^{t} \Phi_{s}^{-1} \frac{a(s) \gamma_{s}}{\sqrt{\epsilon_{1}^{2}+\epsilon_{2}^{2}}} d w_{1}(s)\right], \quad \Phi_{t}=\exp \left\{\int_{0}^{t} a(s) d s\right\}
$$

References

[1] R. S. Liptser, A. N. Shiryaev, Statistics of random processes. II. Applications. (Translated from the Russian) Applications of Mathematics, Vol. 6. SpringerVerlag, New York-Heidelberg, 1978.
[2] V. M. Dochviri, M. A. Shashiashvili, On the convergence of costs in the problem of optimal stopping of stochastic processes in the scheme of Kalman-Bucy. Comm. Statist. C-Sequential Anal. 1 (1982), no. 3, 163-176.

Solving Matching Equations in Variadic Equational Theories

Besik Dundua ${ }^{1}$, Temur Kutsia ${ }^{2}$

${ }^{1}$ I. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi State University
Tbilisi, Georgia
email: bdundua@gmail.com
${ }^{2}$ Research Institute for Symbolic Computation, Johannes Kepler University Linz Linz, Austria

In this talk, we present our recent results about matching in variadic equational theories. In particular, we have designed a sound and complete matching procedure for these theories, computing minimal set of solutions. In general, the procedure is not terminating, since some problems might have an infinite set of solutions. We have identified matching fragments for which the procedure stops and returns a minimal and complete set of solutions. We have also restricted the procedure to a variant of matching, where solutions are of a certain shape, and proved its termination and minimality.

On the Summability of One-Dimensional Associated Fourier Series

Omar Dzagnidze ${ }^{1}$, Irma Tsivtsivadze ${ }^{2}$
${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: odzagni@rmi.ge
${ }^{2}$ Akaki Tsereteli Kutaisi State University, Kutaisi, Georgia
email: irmatsiv@gmail.com

It is known that to each summable in the n-dimensional cube $[-\pi, \pi]^{n}$ function f of variables x_{1}, \ldots, x_{n} there corresponds one n-multiple trigonometric Fourier series $S[f]$ with constant coefficients.

With the function f are associate n one-dimensional Fouries series $S[f]_{1}, \ldots, S[f]_{n}$ with respect to variables x_{1}, \ldots, x_{n}, respectively, with nonconstant coefficients. If a continuous function f is differentiable at some point $x=\left(x_{1}, \ldots, x_{n}\right)$, then all onedimensional Fourier series $S[f]_{1}, \ldots, S[f]_{n}$ converge at x to the value $f(x)$.

We consider a summability of associate series with f [1].

References

[1] O. Dzagnidze, One-dimensional Fourier series of a function of many variables. Trans. A. Razmadze Math. Inst. 171 (2017), no. 2, 167-170.

On Teaching of Mathematics to the Students of Natural Sciences

Tsiala Dzidziguri

Faculty of Mathematics and Computer Sciences, Sokhumi State University Tbilisi, Georgia
email: cialadzidziguri@rambler.ru

We have prepared textbook "Mathematics for the Students of Natural Sciences" for the second edition. The first edition (Innovation, Tbilisi, 2006) has been revised and filled with some themes and exercises. The textbook includes the elements of Analytical Geometry, Linear and Vector Algebra, Differential and Integral Calculus. All the basic issues
have examples and exercises. Some simple mathematical models of chemical, biological, ecological, medical and other processes are considered.

On the H-Wellposedness of the Singular Cauchy Problem for Systems of Linear Impulsive Differential Equations

Goderdzi Ekhvaia, Nato Kharshiladze

Sukhumi State University, Tbilisi, Georgia
email: goderdzi.ekhvaia@mail.ru; natokharshiladze@ymail.com

Let $I \subset R$ be an interval non-degenerate in the point, $t_{0} \in I, I_{t_{0}}=I \backslash\left\{t_{0}\right\}$. Consider the linear system of impulsive equations with fixed points of impulses actions

$$
\begin{gather*}
\frac{d x}{d t}=P(t) x+q(t) \text { for a.a. } t \in I_{t_{0}} \backslash\left\{\tau_{l}\right\}_{l=1}^{+\infty} \tag{1}\\
x\left(\tau_{l}+\right)-x\left(\tau_{l}-\right)=G_{l} x\left(\tau_{l}\right)+g_{l} \quad(l=1,2, \ldots) \tag{2}\\
\lim _{t \rightarrow t_{0}+}\left(H^{-1}(t) x(t)\right)=0 \tag{3}
\end{gather*}
$$

where $P \in L_{l o c}\left(I_{t_{0}}, R^{n \times n}\right), q \in L_{l o c}\left(I_{t_{0}}, R^{n}\right)$, i.e. P and q are, respectively, matrixand vector-functions with integrable components on the every closed interval from $I_{t_{0}}$; $G_{l} \in R^{n \times n}(l=1, \ldots, m), g_{l} \in R^{n}(l=1, \ldots, m), \tau_{i} \neq \tau_{j}$ if $i \neq j$, and $t_{0} \notin\left\{\tau_{1}, \tau_{2}, \ldots\right\}$; $H=\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ is an arbitrary diagonal matrix-functions with continuous diagonal elements $\left.h_{i}: I_{t_{0}} \rightarrow\right] 0,+\infty[(i=1, \ldots, n)$.

The singularity of system (1), (2) is considered in the sense that the matrix P and vector q functions, in general, are not integrable at the point t_{0}.

We assume that

$$
\operatorname{det}\left(I_{n}+G_{l}\right) \neq 0 \quad(l=1,2, \ldots)
$$

where I_{n} is the identity $n \times n$-matrix.
Let x_{0} be the unique solution of the problem (1), (2); (3).
Along with the system (1), (2) consider the sequence of the systems

$$
\begin{align*}
& \frac{d x}{d t}=P_{k}(t) x+q_{k}(t) \text { for a.a. } t \in I_{t_{0}} \backslash\left\{\tau_{l}\right\}_{l=1}^{+\infty} \tag{4}\\
& x\left(\tau_{l}+\right)-x\left(\tau_{l}-\right)=G_{k l} x\left(\tau_{l}\right)+g_{k l}(l=1,2, \ldots) \tag{5}
\end{align*}
$$

$(k=1,2, \ldots)$, where $P_{k}, G_{k l}, q_{k}$ and $g_{k l}(k, l=1,2, \ldots)$ have the properties circumscribed above.

We consider the question on the sufficient conditions guaranteing the unique solvability of the singular problem (4), (5); (3) for any sufficiently large natural k and for so called the H -converge of its solutions $x_{k}(k=1,2, \ldots)$ to x_{0} as $k \rightarrow+\infty$, i.e.

$$
\lim _{k \rightarrow+\infty}(H(t))\left(x_{k}(t)-x_{0}(t)\right)=0 \text { uniformly for } t \in I_{t_{0}} .
$$

The analogous problem has been investigated in [1] for systems of ordinary differential equations.

References

[1] I. T. Kiguradze, On a singular Cauchy problem for systems of linear ordinary differential equations. (Russian) Differ. Uravn. 32 (1996), no. 2, 171-179; translation in Differential Equations 32 (1996), no. 2, 173-180.

Optimal Variational Iteration Approximation of a Fourth-Order Boundary Value Problem

Vedat Suat Erturk
Ondokuz Mayis University, Department of Mathematics, Samsun, Turkey
email: vserturk@omu.edu.tr

In this study, we present a semi-analytical solution of a nonlinear fourth-order integro differential equation subject to two point boundary conditions arising in the study of transverse vibrations of a hinged beam by Optimal Variational Iteration Method. The most recently established methodology, which involves an auxiliary parameter and an auxiliary linear differential operator, is the approach used in this study in order to achieve efficient numerical solution. A sufficient way is considered for determining an optimal value of auxiliary parameter by the way of minimizing the residual error over the problem domain. The numerical examples and their residual error computations are given to support the accuracy and efficiency of the proposed technique.

References

[1] Er. R. K. Dhawan, Applied Mechanics (Engineering Mechanics). S. Chand \& Company Ltd., 2011.
[2] S. Kasprzyk, Transverse vibrations of a beam with hinge. Journal of Theoretical and Applied Mechanics 32 (1994), no. 4, 921-929.
[3] S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. 17 (1950), 35-36.
[4] B. Semper, Finite element approximation of a fourth order integro-differential equation. Appl. Math. Lett. 7 (1994), no. 1, 59-62.
[5] J. Y. Shin, Finite-element approximation of a fourth-order differential equation. Comput. Math. Appl. 35 (1998), no. 8, 95-100.
[6] Q. A. Dang, V. T. Luan, Iterative method for solving a nonlinear fourth order boundary value problem. Comput. Math. Appl. 60 (2010), no. 1, 112-121.
[7] S. T. Mohyud-Din, W. Sikander, U. Khan, N. Ahmed:,Optimal variational iteration method for nonlinear problems. Journal of the Association of Arab Universities for Basic and Applied Sciences, in press.
[8] M. M. Hosseini, S. T. Mohyud-Din, H. Ghaneai, Variational iteration method for non-linear age-structured population models using auxiliary parameter. Zeitschrift für Naturforschung A 65 (2010), no. 12, 1137-1142.
[9] L. Xu, The variational iteration method for fourth order boundary value problems. Chaos, Solitons \& Fractals 39 (2009), no. 3, 1386-1394.

Measure Theoretical Approach for Solving 3-D Optimal Shape Design Problems in Spherical Coordinates

A. Fakharzadeh J., M. Goodarzi
Department of Applied Maths, Faculty of Mathematics, Shiraz University of Technology, Shiraz, Iran
email: a_fakharzadeh@sutech.ac.ir; m.goodarzi@sutech.ac.ir

In this paper, the problem of determining a bounded shape located over the (x, y) plane, with a given projection area and volume such that it minimizes some given surface integral, has been examined. In order to determine the optimal shape, by regarding some useful advantages of spherical coordinates, we have extended a measure theoretical embedding process for shape optimization problems in spherical coordinates. First, the problem is converted into a measure theoretical space as an infinite dimensional linear optimization problem. Then it is relaxed into a finite dimensional linear programming by using approximation schemes. Finally, the solution of this LP is used to identify some points of the nearly optimal surface. Then, using an suitable outlier detection algorithm
and a kind of MATLAB smooth curve fitting toolbox gives us the nearly optimal smooth surface based on the given optimal points. This approach in comparison to the other methods, has some important advantages: linear treatment for even strongly nonlinear problems, global optimization without requiring an initial shape and mesh designing.

 зงдмуябуд兀.

Simply Connected Nilmanifolds

Ágota Figula ${ }^{1}$, Péter T. Nagy ${ }^{2}$
${ }^{1}$ Institute of Mathematics, University of Debrecen, Debrecen, Hungary
email: figula@science.unideb.hu
${ }^{2}$ Institute of Applied Mathematics, Óbuda University, Budapest, Hungary
email: nagy.peter@nick.uni-obuda.hu

Let \mathfrak{g} be a Lie algebra and G be the corresponding connected and simply connected Lie group. A metric Lie algebra $(\mathfrak{g},\langle\cdot, \cdot\rangle)$ is a Lie algebra \mathfrak{g} together with a Euclidean inner product $\langle\cdot, \cdot\rangle$ on \mathfrak{g}. This inner product on \mathfrak{g} induces a left invariant Riemannian metric on the Lie group G. If $(\mathfrak{n},\langle\cdot, \cdot\rangle)$ is a nilpotent metric Lie algebra, then the corresponding nilpotent Lie group N endowed with the left-invariant metric arising from $\langle\cdot, \cdot\rangle$ is a Riemannian nilmanifold. The isometry group of Riemannian nilmanifolds and the totally geodesic subalgebras of metric nilpotent Lie algebras are popular subjects for investigations (cf. [1]-[6]). Together with P. T. Nagy we classify the isometry equivalence classes and determine the isometry groups of Riemannian nilmanifolds on all five dimensional simply connected non two-step nilpotent Lie groups and on all simply connected standard filiform Lie groups. In this classification the metric Lie algebras which possess an orthogonal direct sum decomposition into one-dimensional subspaces play an important role.

References

[1] G. Cairns, A. Hinić Galić, Yu. Nikolayevsky, Totally geodesic subalgebras of nilpotent Lie algebras, J. Lie Theory 23 (2013), 1023-1049.
[2] P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric. Ann. Sci. Ecole Norm. Sup. 27 (1994), 611-660.
[3] S. Homolya, O. Kowalski, Simply connected two-step homogeneous nilmanifolds of dimension 5. Note Math. 26 (2006), 69-77.
[4] J. Lauret, Homogeneous nilmanifolds of dimension 3 and 4. Geom. Dedicata 68 (1997), 145-155.
[5] P. T. Nagy and S. Homolya, Geodesic vectors and subalgebras in two-step nilpotent metric Lie algebras. Adv. Geometry 15 (2015), 121-126.
[6] E. Wilson, Isometry groups on homogeneous nilmanifolds. Geom. Dedicata 12 (1982), 337-346.

Dynamics of the Electron Spins $S=1$ with the Zero-Field Level Splitting in the Molecular Crystals in a Strong Constant Field

N. Fokina ${ }^{1}$, E. Khalvashi ${ }^{2}$, M. Elizbarashvili ${ }^{3}$
${ }^{1}$ Iinstitute "Talgha" of the Georgian Technical University, Tbilisi, Georgia
${ }^{2}$ Batumi Shota Rustaveli State University, Batumi, Georgia
${ }^{3}$ Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University Tbilisi, Georgia
email: maikoeliz@gmail.com

Some questions of the dynamics of the electron spins $S=1$ possessing the zero-field splitting are investigated in a strong constant magnetic field. The equations of motion of the magnetization components related to the separate transitions of the EPR fine structure (FS) are derived. It is demonstrated that the free motion of the sample magnetization is the precession at the frequency of the excited "allowed" transition with an ellipse in the plane transverse to the constant field, which is accompanied by the longitudinal magnetization component oscillation at the frequency of the "forbidden" transition. The tensor of the dynamic susceptibility of the spin-system (SS) to the microwave field is written at the creation of the resonance conditions for each transition of the well resolved FS. The matrix elements of this tensor reflect the elliptical character of the magnetization precession at the frequency of the very same transition, for which the resonance conditions are created. The SLR rates of the separate transitions of the FS are calculated at the same mechanism. The low-frequency method of their measurement is suggested with the help of the Gorter type experiment in a strong constant field transforming the three-level SS into the two-level one with the analytically derived expressions for the three non-zero diagonal elements of the low-frequency susceptibility tensor at the three directions of the constant field.

Boundary Contact Problems for Hemitropic Elastic Solids with Friction
Roland Gachechiladze
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: r.gachechiladze@yahoo.com

We investigate boundary-contact problem of statics of the theory of elasticity for homogeneous hemitropic elastic medium with regard friction. In this case on the part of the surface where friction occurs, instead of the normal component of the body force, a normal component of displacement is given. We consider two cases, the so-called coercive (when elastic media is fixed along some parts of boundary), and the semi-coercive case (the boundary is not fixed). By using the Steklov-Poincaré operator, we reduce this problem to an equivalently boundary variational inequality. Based on our variational inequality approach, we prove existence and uniqueness theorems for weak solutions. We prove that the solutions continuously depend on the data of the original problem. In the semi-coercive case, the necessary condition of solvability of the corresponding contact problem is written out explicitly. This condition under certain restrictions is sufficient as well.

The Solutions of Stochastic Differential Equations Connected with Nonlinear Elliptic Equations

T. S. Gadjiev, T. Maharramova
Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences Baku, Azerbaijan
email: tgadjiev@mail.az

In the paper we consider the stochastic differential equations. The solutions of these equations connected with nonlinear elliptic equations are studied.

Key words: Stochastic differential equations, nonlinear equation, elliptic.

Numerical Model of a Mesoscale Boundary Layer of the Atmosphere and Some Processes Proceeding in It

Giorgi Geladze, Manana Tevdoradze

I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: givi-geladze@rambler.ru

On the basis of developed by us two dimensional (in the vertical $x-z$ plane), nonstationary numerical model of the mesoscale boundary layer of the atmosphere (MBLA) the following works are carried out:

The "dry" model, i.e. is modelled only MBLA thermohydrodynamics. It is basic model for our researches.

The "humidity" model, i.e. model considers processes fog and cloud formation against the background of a thermohydrodynamics of "dry" MBLA. In this task are simulated:

Separately the taken cloud and fog;
The mode of simultaneous existence of a cloud and fog is revealed;
It is imitated daily continuous cloudiness;
The integrated vertical complex of fog and cloud is received - here we had to investigate in details a role of horizontal and vertical turbulence in formation of humidy processes;
"Theoretical" influence on radiation fog by means of thermal sources and upright the descending airflows is carried out; are defined time of a dispelling of fog; optimum regime of influence are picked logically up.

Influence of background wind on MPSA thermohydrodynamics is investigated - it can modelling creation and optimization of wind-shelter strips.

The Classical Three-Body Problem without Environment and with It. New Ideas and Approaches in the Theory of Dynamical Systems

Ashot Gevorkyan
Institute for Informatics and Automation Problems, NAS of Armenia, Yerevan, Armenia
Institute of Chemical Physics, NAS of Armenia, Yerevan, Armenia
email: gashot@ipia.sci.am

The three-body general problem as a problem of geodesic flows on the Riemannian manifold is formulated [1]. It is proved that a curved geometry with its local coordinate
system allows us to detect new hidden symmetries of the internal motion of a dynamical system and reduce the three-body problem to the system of order 6th. It is shown that the equivalence between of the initial Newtonian three-body problem and developed representation provides coordinate transformations in combination with an underdefinished system of algebraic equations, that makes the system of geodesic equations irreversible relative to the evolution parameter, i.e. the length of the arc of the geodesic curve. The latter leads to branching of trajectories problem, which, depending on the geometry properties of the Riemannian space, can lead to chaos in the dynamical system. Equations of deviation of geodesic trajectories characterizing the behavior of the dynamic system as a function of the initial parameters of the problem are obtained. To describe the motion of a dynamical system influenced by external regular and stochastic forces, a system of stochastic equations (SDEs) is obtained. Using these SDEs, the partial differential equation of the second order is obtained for the joint probability distribution of the momentum and coordinate. A criterion for estimating the degree of deviation of probabilistic current tubes of geodesic trajectories in the phase and configuration spaces is formulated. The mathematical expectation of the transition probability between different asymptotic channels is determined taking into account the multichannel nature of the scattering.

Lastly, it is proved that the classical dynamical system, beginning with three bodies, has a so-called internal evolution time, which makes classical equations irreversible relative to this parameter. The latter leads to new ideas and possibilities for studying dynamical systems as mathematical as well as physical points of view.

References

[1] A. S. Gevorkyan, On the motion of classical three-body system with consideration of quantum fluctuations. Physics of Atomic Nuclei 80 (2017), no. 2, 358-365.

Diagram Using Some Practical Aspects

Teimuraz Giorgadze

Department of Teaching Methods, Akaki Tsereteli State University Kutaisi, Georgia
email: temo.giorgadze@yahoo.com

From ancient times the practical work of the human being required the physical, geometric and other properties of different (but uniform) objects. In the primary school mathematics course to solve problems and draw up the tasks it takes great place for diagrams. The solution of the two-dimensional diagrams are based on the theory theorem,
in particular, at any point on the rectangle diagonal, parallel lines of the rectangle sides, and in the inside of the given rectangle, the two rectangles are rectangular. Sometimes the simplest calculations can be made to answer the questions in the tasks that can be achieved using two-dimensional diagrams.

Problem of Statics of the Linear Thermoelasticity of the Microstretch Materials with Microtemperatures for a Half-Space

Levan Giorgashvili, Aslan Djagmaidze, Maia Kharashvili
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
emails: lgiorgashvili@gmail.com; omar-d@yandex.ru; maiabickinashvili@yahoo.com

We consider the statics case of the theory of linear thermoelasticity with microtemperatures and microstrech materials. The representation formula of differential equations obtained in the paper is expressed by means of four harmonic and four metaharmonic functions. These formulas are very convenient and useful in many particular problems for domains with concrete geometry. Here we demonstrate an application of these formulas to the III type boundary value problem for a half-space. Uniqueness theorems are proved. Solutions. are obtained in quadratures.

Boundary Value Problems of statics of Thermoelasticity of Bodies with Microstructure and Microtemperatures

Levan Giorgashvili, Shota Zazashvili
Departament of Mathematics, Georgian Technical University, Tbilisi, Georgia email: lgiorgashvili@gmail.com; zaza-ude@hotmail.com

The paper deals with the equilibrium theory of thermoelasticity for elastic isotropic microstretch materials with microtempeatures and microdilatations. For the system of differential equations of equilibrium the fundamental matrix is constructed explicitly in terms of elementary functions. With the help of the corresponding Green identities the general integral representation formula of solutions by means of generalized layer and

Newtonian potentials are derived. The basic Dirichlet and Neumann type boundary value problems are formulated in appropriate function spaces and the uniqueness theorems are proved. The existence theorems for classical solutions are established by using the potential method.

Energy Control Issues

George Giorgobiani, Jimsher Giorgobiani, Mziana Nachkebia
N. Muskhelishvili Institute of Computational Mathematics of the
Georgian Technical University, Tbilisi, Georgia
email: giorgobiani.g@gtu.ge

We present our collaborative research with energy experts about some issues of energy control:

- Elaboration of the optimal parameters based on the Moran model for the HPP (Hydro Power plant) with reservoir under construction;
- Study of optimal regimes of work of HPP by means of the method of Dynamic Programming, reducing the constraints imposed in the previous works of the authors;
- Study of optimal regimes for the cascade systems;
- Control of multifunctional systems;
- Two models of optimal work of energy system (regional or for the single country) implemented by use of Dynamic or Mathematical Programming.

Based on the real, existing data we also present the results of practical character.

On the Theoretical and Applied Aspects of the Generating Functions' Method in Discrete Math Learning Courses

Guram Gogishvili
St. Andrew the First Called Georgian University, Faculty of Informatics, Mathematics and Natural Sciences, Tbilisi, Georgia
email: guramgog@gmail.com

The method of generating functions creates a powerful analytical apparatus of mathematical research. Its capabilities and theoretical and practical areas of use are diverse in the study of discrete objects. At the beginning of systematic teaching of this theory, methodically is preferable to set various simple and interesting practical motivational tasks and demonstrate an efficient use of the method of generating functions for the solution of the tasks.

The generating function $A(z)$ of the numerical sequence $\left(a_{n}\right)$ is a power series $\sum_{n \geq 0} a_{n} z^{n}$, where z can be considered as complex variable. Then obviously the question of convergence of the corresponding series arises.
$A(z)$ can also be considered as a formal power series and in such representation, if the problem of studying the asymptotic behavior of series' coefficients is excluded, the question of the series convergence can be removed. Then, even in the case of divergent series, we can formally conduct operations of differentiation and integration and these operations will be correct. In such cases, if for the sequence $\left(a_{n}\right)$ given by recurrence we obtain close formed formula (i.e. a formula in which a_{n} can be represented as an explicit function of n), then these formulas considered as hypothetical can be proved by the mathematical induction.

By addition, multiplication, shift, transformation of variables. differentiation and integration the possibilities of using of these functions are widened.

In our talk we present different spheres of the use of generating functions and also present the methodical side of their teaching. In particular, certain algorithms of obtaining close formed formulas for sequences given by recurrence in various problems will be illustrated.

Periodic Field Configurations in a Theory of Scalar Fields and Phase Transitions

Vakhtang Gogokhia ${ }^{1,2}$, Avtandil Shurgaia ${ }^{2}$
${ }^{1}$ Department of Theoretical Physics, WIGNER Research Centre for Physics Budapest, Hungary
${ }^{2}$ Department of Theoretical Physics, A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia

email: gogohia.vahtang@wigner.mta.hu, gogokhia@rmi.ge; avsh@rmi.ge

The periodic field configurations have turned out to be a significant field configurations which interpolate between the stable vacuum configurations and unstable sphalerons sitting on the top of the potential barrier. In this process the transition from false vacuum to the true one takes place and at the finite energies below the potential barrier temperature assisted quantum tunneling is dominating whereas at higher energies (above the potential barrier) the process is pure classical (thermal activation).

The talk is devoted to a simple model in which periodic field configurations are found, indeed a scalar triplet with broken $S U(2)$ symmetry is considered. Classical equations are studied and a set of particular solutions obtained. The solutions are analyzed in view of phase transitions. Charged and neutral solutions are presented. These periodic field configurations are used in view of phase transitions between the thermally assisted quantum tunneling and pure classical process (thermal activation). The field configurations with zero and nonzero charges are analyzed and their contributions in phase transitions investigated.

Spectral Estimates for the Laplace and p-Laplace Neumann Operators in Space Domains

Vladimir Gol'dshtein
Ben-Gurion University, Be'er Sheva, Israel
email: vladimir@bgu.ac.il

In [1] we obtained lower estimates of $\mu_{1}(\Omega)$ in terms of a hyperbolic (conformal) radius of Ω for domains $\Omega \subset \mathbb{R}^{2}$ for a large class of non-convex domains. For space domains the theory of conformal mappings is not relevant.

We prove discreteness of the spectrum of the Neumann-Laplacian in a large class of non-convex space domains. The lower estimates of the first non-trivial eigenvalue are
obtained in terms of geometric characteristics of homeomorphisms that induce composition operators on homogeneous Sobolev spaces $L^{1, p}$. The suggested method is based on Poincaré-Sobolev inequalities that are obtained with the help of the geometric theory of composition operators. A corresponding composition operators are induced by a generalizations of conformal homeomorphisms that are mappings of bounded 2-dilatation (weak 2-quasiconformal mappings).

The work is done jointly with Alexander Ukhlov.

References

[1] V. Gol'dshtein and A. Ukhlov, On the First Eigenvalues of Free Vibrating Membranes in Conformal Regular Domains. Arch. Ration. Mech. Anal. 221 (2016), no. 2, 893-915.

Boundary Value Problems for a Circular Ring with Triple-Porosity in the Case of an Elastic Cosserat Medium

Bakur Gulua ${ }^{1,2,3}$, Roman Janjgava ${ }^{2}$

${ }^{1}$ Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
${ }^{3}$ Sokhumi State University, Tbilisi, Georgia
email: bak.gulua@gmail.com; roman.janjgava@gmail.com

In the paper the two-dimensional version of the fully coupled linear theory of elasticity for solids with triple porosity is considered in the case of an elastic Cosserat medium [1][3]. The solutions are represented by means of three analytic functions of a complex variable and three solution of the Helmholtz equations [4]. The problems are solved when the components of the displacement vector or the stress tensor are known on the boundary of the concentric circular ring.

Acknowledgement. This work was supported by a financial support of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).

References

[1] D. E. Beskos, E. C. Aifantis, On the theory of consolidation with double porosity. II. Internat. J. Engrg. Sci. 24 (1986), no. 11, 1697-1716.
[2] E. Cosserat, F. Cosserat, Théorie des corps déformables. Hermann, Paris, 1909.
[3] R. Janjgava, The approximate solution of some plane boundary value problems of the moment theory of elasticity. Adv. Math. Phys. 2016, Art. ID 3845362, 12 pp.
[4] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending. Noordhoff International Publishing, Leiden, 1977.

Using a Small Parameter Method for Splitting of the Multi-Level Semi-Discrete Scheme for the Evolutionary Equation

David Gulua ${ }^{1}$, Jemal Rogava ${ }^{2}$
${ }^{1}$ Department of Computation Mathematics, Georgian Technical University
Tbilisi, Georgia
email: jemal.rogava@tsu.ge
${ }^{2}$ Department of Mathematics, I. Javakhishvili Tbilisi State University
Tbilisi, Georgia
email: d_gulua@gtu.ge

In the work, for evolutionary equations, multi-level (three and four-level) semi-discrete schemes are considered. With a small parameter method (with perturbation algorithm), these semi-discrete schemes are reduced to two-level schemes. Using the combination of the solutions of these schemes, an approximate solution to the original problem is constructed. In a Banach and a Hilbert spaces, estimate on the approximate solution error are proved using properties of semigroups and associated polynomials under minimal assumptions about the smoothness of the data of the problem.

Perturbation Algorithm for Numerical Realization of Difference Scheme of Parabolic Equation

Ekaterine Gulua
Faculty of Informatics and Control Systems, Georgian Technical University
Tbilisi, Georgia
email: e.gulua@gtu.ge

In the work, using the perturbation algorithm, computer realization of a purely implicit three-level difference scheme for spatial single-dimensional evolutionary problem has been implemented. In MatLab the relevant program and user interface has created. Numerical calculations are executed and the corresponding graphs are presented.

The interface allows users to perform numerical realization of this type of evolutionary problems without knowing the perturbation algorithm. In addition to the specificity of the algorithm, the interface is built in such a way that it allows the customer to gradually solve the initial problem, which in turn will useful to carry out a number of research numerical experiments.

An Overwiev Intuitionistic Fuzzy Soft Supratopological Spaces

Cigdem Gunduz Aras

Department of Mathematics, Kocaeli University, Kocaeli, 41380-Turkey email: caras@kocaeli.edu.tr

In this paper, we introduce intuitionistic fuzzy soft supratopological spaceand then we define the notions of intuitionistic fuzzy soft supra closure, intuitionistic fuzzy soft supra interior. Later we investigate some of their important properties. We also consider the notions of fuzzy strongly soft supra connected, fuzzy soft supra continuous mapping and intuitionistic fuzzy soft supra compact. We investigate many properties relations and characterizations of this notions.

References

[1] S. Bayramov and C. Gunduz, Soft locally compact spaces and soft paracompact spaces. J. Math. Sys. Sci. 3 (2013), 122-130.
[2] S. Bayramov, C Gunduz, On intuitionistic fuzzy soft topological spaces. TWMS J. Pure Appl. Math. 5 (2014), no. 1, 66-79.
[3] D. Molodtsov, Soft set theory-first results. Global optimization, control, and games, III. Comput. Math. Appl. 37 (1999), no. 4-5, 19-31.
[4] N. Turanlı, An overwiev of intuitionistic fuzzy supratopological spaces. Hacettepe J. Math. Statistics 32 (2003), 17-26.

Separation Axioms in Supra Soft Bitopological Spaces

Cigdem Gunduz Aras ${ }^{1}$, Sadi Bayramov ${ }^{2}$
${ }^{1}$ Department of Mathematics, Kocaeli University, Kocaeli, Turkey
email: caras@kocaeli.edu.tr
${ }^{2}$ Department of Algebra and Geometry, Baku State University, Baku, Azerbaijan email: baysadi@gmail.com

The concept of soft sets was introduced by Molodtsov in 1999 as a general mathematical tool for dealing with uncertain objects. Later topological stuructures of soft sets have been studied by some authors in recent years. M. Shabir and M. Naz presented soft topological spaces and studied some important properties of them. Many researcher studied some of basic concepts and properties of soft topological spaces. S. A. El-Sheikh and A. M. Abd. El-latif introduced the concept of supra soft topological spaces. Supra soft topological spaces are generalization of soft topological spaces. Ittanagi defined the notion of soft bitopological space which is given over an initial universal set X with fixed set of parameters. The purpose of this paper is to introduce the notions of some separation axioms in supra soft bitopological spaces and investigate some of their properties.

References

[1] S. Bayramov and C. Gunduz, Soft locally compact spaces and soft paracompact spaces. J. Math. Sys. Sci. 3 (2013), 122-130.
[2] B. M. Ittanagi, Soft bitopological spaces. Internat. J. Comput. Appl. 107(7) (2014), 1-4.
[3] S. A. El-Sheikh, A. M. Abd. El-latif, Decompositions of some types of supra soft sets and soft continuity. Int. J. Math. Trends and Technology 9(1) (2014), 37-56.
[4] D. Molodtsov, Soft set theory-first results. Global optimization, control, and games, III. Comput. Math. Appl. 37 (1999), no. 4-5, 19-31.
[4] M. Shabir, M. Naz, On soft topological spaces. Comput. Math. Appl. 61 (2011), no. 7, 1786-1799.

On the Integral Invariants of Line Geometry

Osman Gürsoy ${ }^{1}$, Muhsin Incesu 2
${ }^{1}$ Maltepe University, Istanbul, Turkey
${ }^{2}$ Muş Alpaslan University, Muş, Turkey
email: osmangursoy@maltepe.edu.tr

As known the geometry of a trajectory surfaces tracing by an oriented line (spear) is important in line geometry and spatial kinematics. Until early 1980s,although two real integral invariants, the pitch of angle λ_{x} and the pitch ℓ_{x} of an x-trajectory surface were known, any dual invariant of the surface were not. Because of the deficiency, line geometry wasn't being sufficiently studied by using dual quantities.

A global dual invariant, Λ_{x}, of an x-closed trajectory surface is introduced and shown that there is a magic relation between the real invariants, $\Lambda_{x}=\lambda_{x}-\varepsilon \ell_{x}$, [1]. It gives suitable relations, such as $\Lambda_{x}=2 \pi-A_{x}=\oint G_{x} d s$ or $\lambda_{x}=2 \pi-a_{x}=\oint g_{x} d s$ and $\ell_{x}=a_{x}^{*}=\oiint\left(\partial_{u}+\partial_{v}\right) d u d v$ which have the new geometric interpretations of x-trajectory surface where a_{x} is the measure of the spherical area on the unit sphere described by the generator of x-closed trajectory surface and ∂_{u} and ∂_{v} are the distribution parameters of the principal surfaces of the $X(u ; v)$-closed congruence. Therefore all the relations between the global invariants $\lambda_{x}, \ell_{x}, a_{x}, a_{x}^{*}, g_{x}, g_{x}^{*}, K, T, \sigma$ and s_{1} of x-c.t.s. are worth reconsidering in view of the new geometric explanations. Thus, some new results and new explanations are gained [2], [3]. Furthermore, as a limit position of the surface, some new theorems and comments related to space curves are obtained.

References

[1] O. Gürsoy, The dual angle of pitch of a closed ruled surface. Mech. Mach. Theory 25 (1990), no. 2, 131-140.
[2] O. Gürsoy, On the integral invariants of a closed ruled surface. J. Geom. 39 (1990), no. 1-2, 80-91.
[3] O. Gürsoy, Some results on closed ruled surfaces and closed space curves. Mech. Mach. Theory 27 (1992), no. 3, 323-330.

Bounded Operators on Weighted Besov Spaces of Holomorphic Functions on Polydiscs

Anahit V. Harutyunyan ${ }^{1}$, George Marinescu ${ }^{2}$
${ }^{1}$ Yerevan State University, Yerevan, Armenia
${ }^{2}$ University of Cologne, Cologne, North Rhine-Westphalia, Germany
email: anahit@ysu.am

Assuming that S is the space of functions of regular variation (see [2]) and $\omega=$ $\left(\omega_{1}, \ldots, \omega_{n}\right), \omega_{j} \in S$, by $B_{p}(\omega)$ we denote the class of all holomorphic functions defined on the polydisk U^{n} such that

$$
\|f\|_{B_{p}(\omega)}^{p}=\int_{U^{n}}|D f(z)|^{p} \prod_{j=1}^{n} \frac{\omega_{j}\left(1-\left|z_{j}\right|\right) d m_{2 n}(z)}{\left(1-\left|z_{j}\right|^{2}\right)^{2-p}}<+\infty
$$

where $d m_{2 n}(z)$ is the $2 n$-dimensional Lebesgue measure on U^{n} and D stands for a special fractional derivative of f defined here. For properties of holomorphic Besov spaces see [1].

We consider the boundedness of little Hankel operator $h_{g}^{\alpha}(f)$ in $B_{p}(\omega)$. For the case $0<p<1$ and for the case $p=1$ we have the following results
Theorem 1. Let $0<p \leq 1, f \in B_{p}(\omega)\left(\right.$ or $\left.f \in \bar{B}^{p}(\omega)\right), g \in L^{\infty}\left(U^{n}\right)$. Then $h_{g}^{\alpha}(f) \in$ $\bar{B}_{p}(\omega)$ if and only if $\alpha_{j}>\alpha_{\omega_{j}} / p-2,1 \leq j \leq n$.

The case $p>1$ is different from the cases of $0<p<1$ and from the case of $p=1$. Here we have the following
Theorem 2. Let $1<p<+\infty, f \in B_{p}(\omega)$ (or $\left.f \in \bar{B}_{p}(\omega)\right)$, $g \in L^{\infty}\left(U^{n}\right)$. Then if $\alpha_{j}>\alpha_{\omega_{j}}, 1 \leq j \leq n$ then $h_{g}^{\alpha}(f) \in \bar{B}_{p}(\omega)$.

In this paper we consider also the generalized Berezin type operators $B_{g}^{\alpha}(f)$ on $B_{p}(\omega)$ (and on $L_{p}(\omega)$) and prove some theorems about the boundedness of these operators.

We have the following results:

1. for the case of $0<p<1$ we have

Theorem 3. Let $0<p<+\infty, p \wedge, f \in B_{p}(\omega)\left(\right.$ or $\left.f \in \bar{B}_{p}(\omega)\right), g \in L^{\infty}\left(U^{n}\right)$ and let $\alpha_{j}>\alpha_{\omega_{j}} / p-2,1 \leq j \leq n$. Then $B_{g}^{\alpha}(f) \in L^{p}(\omega)$.
2. we consider now the case of $p=1$.

Theorem 4. Let $f \in B_{1}(\omega)$ (or $\left.f \in \bar{B}_{1}(\omega)\right), g \in L^{\infty}\left(U^{n}\right)$. Then $B_{g}^{\alpha}(f) \in L_{1}(\omega)$ if and only if $\alpha_{j}>\alpha_{\omega_{j}}, 1 \leq j \leq n$.

References

[1] A. V. Harutyunyan, W. Lusky, Weighted holomorphic Besov spaces on the polydisk. J. Funct. Spaces Appl. 9 (2011), no. 1, 1-16.
[2] E. Seneta, Regularly varying functions. Lecture Notes in Mathematics, Vol. 508. Springer-Verlag, Berlin-New York, 1976.

On a Boundary Value Problem with Infinite Index
Hrachik Hayrapetyan
Yerevan State University, Yerevan, Armenia
email: hhayrapet@gmail.com

In the work it is investigated Riemann boundary value problem in a unit circle $D^{+}=$ $\{z ;|z|<1\}$ with the following setting:

Problem R

Determine analytic in $D^{+} \cup D^{-}$function $\varphi(z), \varphi(\infty)=0$ such that the following holds:

$$
\begin{equation*}
\lim _{r \rightarrow 1-0}\left\|\varphi^{+}(r t)-a(t) \varphi^{-}\left(r^{-1} t\right)-f(t)\right\|_{L^{p}(\rho)}=0 \tag{1}
\end{equation*}
$$

where $1 \leq p<\infty, \rho(t)=\prod_{k=1}^{\infty}\left|t_{k}-t\right|^{\delta_{k}}, \delta_{k}>0, \sum_{k=1}^{\infty} \delta_{k}<\infty$.

On a solution

In the case $1<p<\infty$ it is shown that problem (1) is normally solvable. In other words, the homogeneous problem has a finite number of linearly independent solutions, and the inhomogeneous problem is solvable for any function $f \in L^{p}(\rho)$. If $p=1$, then the general solution of the homogeneous problem (1) can be represented in the form:

$$
\varphi_{0}(z)=\sum_{k=1}^{\infty} \frac{A_{k}}{t_{k}-z}
$$

where $\sum_{k=1}^{\infty} A_{k}<\infty$. Thus, the general solution of the problem (1) can be represented in the form: $\varphi(z)=\varphi_{0}(z)+\varphi_{1}(z)$, where

$$
\varphi_{1}(z)=\sum_{k=1}^{\infty} \varphi_{1 k}(z)
$$

and

$$
\varphi_{1 k}(z)=\frac{1}{2 \pi i\left(t_{k}-z\right)} \int_{T_{k}} \frac{f(t)\left(t_{k}-t\right)}{t-z} d t
$$

Besides, $T=\cup T_{k}$, where $T_{k}, k=1,2, \ldots$, intervals are mutually disjoint.

References

[1] H. M. Hayrapetyan, M. S. Hayrapetyan, The Hilbert boundary value problem in the weighted spaces $L^{1}(\rho)$. (Russian) Izv. Nats. Akad. Nauk Armenii Mat. 43 (2008), no. 2, 25-42; translation in J. Contemp. Math. Anal. 43 (2008), no. 2, 85-99.

2. ls
3. Я̊п

 дmegmols sag

 maguli1004@gmail.com

PDE Based Method for Image Enhancing and Image Restoration

Safar Irandoust-Pakchin
Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
email: s.irandoust@tabrizu.ac.ir

In this work we present an new filters for image enhancing and image restoration processes. We use the proposed filter that is completely adaptive and it changes proportional to structure of the image. This model has some advantages such as deblurring and denoising and fully adaptivity. It can be used practically in enhancing processes. We use different test images to show the validity of this method. Numerical experiments illustrate the efficiency of the proposed method.

Keywords: Perona-Malik filter, shock filter, deblurring, PDE based image restoration, fractional differential equation.

References

[1] G. Aubert, P. Kornprobst, Mathematical problems in image processing. Partial differential equations and the calculus of variations. Applied Mathematical Sciences, 147. Springer, New York, 2006.

On the Yokoi's Invariant Value of Certain Real Quadratic Fields with the Period Eight

Sevcan Işikay ${ }^{1}$, Ayten Pekin ${ }^{2}$
${ }^{1}$ Gebze Technical University, Kocaeli, Turkey
email: s.isikay@gtu.edu.tr
${ }^{2}$ Istanbul University, Department of Mathematics, Istanbul, Turkey
email: aypekin@istanbul.edu.tr

Let $K=Q(\sqrt{d})$ be a real quadratic field, where d is a positive square-free integer congruent to 1 modulo 4. In this paper, we obtain some conditions for Yokoi's d-invariant value to be zero with period $k_{d}=8$ using the explicit form of the fundamental unit.

2010 AMS Subject Classification: Primary 11A55; Secondary 11R27.
Key Words: Continued fraction, fundamental unit.

References

[1] T. Azuhata, On the fundamental units and the class numbers of real quadratic fields. Nagoya Math. J. 95 (1984), 125-135.
[2] H. Yokoi, New invariants and class number problem in real quadratic fields. Nagoya Math. J. 132 (1993), 175-197.
[3] K. Tomita, Explicit representation of fundamental units of some quadratic fields. Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 2, 41-43.
[4] K. Tomita, Explicit representation of fundamental units of some real quadratic fields. II. J. Number Theory 63 (1997), no. 2, 275-285.
[5] R. A. Mollin, Quadratics. CRC Press, Boka Raton, FL, 1995.
[6] R. A. Mollin, H. C. Williams, A complete generalization of Yokoi's p-invariants. Colloq. Math. 63 (1992), no. 2, 285-294.
[7] G. Karadeniz Gözeri, A. Pekin, Explicit form of the fundamental units of certain real quadratic fields. Eur. J. Pure Appl. Math. 7 (2014), no. 1, 55-64.
[8] Ö. Özer, A. Pekin, An algorithm for explicit form of fundamental units of certain real quadratic fields and period eight. Eur. J. Pure Appl. Math. 8 (2015), 343-356.
[9] Ö. Özer, A. Pekin, An algorithm for explicit form of fundamental units of certain real quadratic fields. J. Anal. Number Theory 4 (2016), 23-27.

The Boundary-Transmission Problem of Statics

Diana Ivanidze, Marekh Ivanidze
Department of Mathematics, Georgian Technical University
Tbilisi, Georgia
email: dianaivanize@gmail.com; marexi.ivanidze@gmail.com

The present thesis deals with the problems of Mathematical Physics, in particular three-dimensional boundary-transmission problems of statics of thermo-elasticity theory for hemitropic solids.

One of the most essential results is investigation of the uniqueness questions. The case is that solutions to the problem should be sought in the space of vector functions which are only bounded at infinity.

The existence of solutions is proved by the potential method and the theory of singular integral equations.

A Problem of Plane Asymmetric Elasticity for a Perforated Rectangular Domain

Roman Janjgava
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
Georgian National University, Tbilisi, Georgia
email: roman.janjgava@gmail.com

In this paper the plane boundary value problem of the asymmetric theory of elasticity for a perforated domain is considered. The domain is a square with circular holes located in a certain way. The problem of stretch-press of such a plate is solved approximately [1].

Acknowledgement. The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).

References

[1] R. Janjgava, The approximate solution of some plane boundary value problems of the moment theory of elasticity. Adv. Math. Phys. 2016, Art. ID 3845362, 12 pp.

The Beta Function, New Properties and Applications

Vagner Sh. Jikia

I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: v_jikia@yahoo.com

We have defined the Euler Beta function of imaginary parameters [1] and have shown that

$$
\begin{equation*}
B(i x,-i x)=\int_{0}^{1} d t t^{i x-1}(1-t)^{-i x-1}=\int_{0}^{\infty} d t t^{i x-1}=2 \pi \delta(x) . \tag{1}
\end{equation*}
$$

From the equalities (1), one gets:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{d u}{1+\exp (u)} \cos (x u)=\int_{-\infty}^{+\infty} d u \frac{\exp (u)}{1+\exp (u)} \cos (x u)=\pi \delta(x) . \tag{2}
\end{equation*}
$$

Differentiating the expression (1) one can write (see also [2]):

$$
\int_{0}^{1} d t t^{i x-1}(1-t)^{-i x-1} \ln [t /(1-t)]=\int_{0}^{1} d t t^{i x-1} \ln (t)=-2 \pi i \delta^{\prime}(x) .
$$

Due to the formulas (2), one obtains:

$$
\int_{-\infty}^{+\infty} \frac{d u}{1+\exp (u)} \sin (x u) u=\int_{-\infty}^{+\infty} d u \frac{\exp (u)}{1+\exp (u)} \sin (x u) u=-\pi \delta^{\prime}(x)
$$

The method developed in [1] is connected with many new results, some of them useful in avoiding the quantum mechanical difficulties.

Acknowledgement. This work was supported by Georgian Shota Rustaveli National Science Foundation (grant FR/ 417/6-100/14).

References

[1] V. Jikia, The Euler Beta function of imaginary parameters and its connection with the Dirac function. Rep. Enlarged Session Semin. I. Vekua Inst. Appl. Math. 30 (2016), 35-38.
[2] V. Jikia, Some divergence integrals and Dirac delta function. International Workshop on Operator Theory and Applications. Book of Abstracts. July 6-10, Tbilisi, Georgia, 2015.

The Special Functions, the New Relations

Vagner Jikia ${ }^{1}$, Ilia Lomidze ${ }^{2}$

${ }^{1}$ I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia
email: v_jikia@yahoo.com; Lomiltsu@gmail.com

Using the next integral formula (see, e.g., [1, p. 960])

$$
\begin{aligned}
Q_{\nu}^{\mu}(z)= & \exp (i \pi \mu) \frac{\Gamma(\nu+1)}{\Gamma(\nu-\mu+1)} \int_{0}^{\infty} d t \cosh (\mu t)\left(z+\sqrt{z^{2}-1} \cosh (t)\right)^{-\nu-1} \\
& \operatorname{Re}(\nu+\mu)>-1, \quad \nu \neq-1,-2,-3, \ldots,|\arg (z \pm 1)|<\pi
\end{aligned}
$$

one can show that the relation holds [2]:

$$
\begin{gather*}
Q_{\nu}^{i \tau}(z)=\exp (-\pi \tau) \frac{\Gamma(\nu+i \tau+1)}{\Gamma(\nu+1)} Q_{\nu}(z) \tag{1}\\
\operatorname{Im}(\nu)=0, \quad \operatorname{Re}(\nu)>-1, \quad|\arg (z-1)|<\pi
\end{gather*}
$$

where $Q_{\nu}^{\mu}(z)$ and $Q_{\nu}(z)$ are the well-known Legendre functions of the second kind and $\Gamma(z)$ is the Euler gamma function.

Besides, due to the asymptotic formula (see, e.g., [3, p. 220]):

$$
Q_{\nu}(z)=-\frac{\ln (z-1)}{2 \Gamma(\nu+1)}, \quad z \rightarrow 1, \quad \nu \neq-1,-2,-3, \ldots,|\arg (z-1)|<\pi
$$

from the equality (1) one obtains:

$$
\begin{gather*}
Q_{\nu}^{i \tau}(z)=-\frac{1}{2} \exp (-\pi \tau) \frac{\Gamma(\nu+i \tau+1)}{\Gamma^{2}(\nu+1)} \ln (z-1), \quad z \rightarrow 1 \tag{2}\\
\operatorname{Im} \nu=0, \operatorname{Re} \nu>-1, \quad|\arg (z-1)|<\pi
\end{gather*}
$$

The results obtained are useful in avoiding the quantum mechanical problems. Using the formulas (1) and (2) we have derived the transition amplitude of two charged particles of continuous spectrum in the light photons approximation.

Acknowledgement. This work was supported by Georgian Shota Rustaveli National Science Foundation (Grant FR/417/6-100/14).

References

[1] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Translated from the Russian. Seventh edition. Elsevier/Academic Press, Amsterdam, 2007.
[2] V. Jikia, I. Lomidze, The Legendre Functions of the Second Kind. New Relations. Rep. Enlarged Session Semin. I. Vekua Inst. Appl. Math. (will be published).
[3] F. W. J. Olver, Asymptotics and special functions. Computer Science and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974.

About One Method of Solution of Elliptic Kirchhoff Type Equation

Nikoloz Kachakhidze, Zviad Tsiklauri
Georgian Technical University, Tbilisi, Georgia
email: n.kachakhidze@gtu.ge; zviad_tsiklauri@yahoo.com

Let us consider the following boundary value problem

$$
\begin{gather*}
-\varphi\left(\int_{\Omega}|\nabla w|^{2} d x\right) \Delta w=f(x), \quad x \in \Omega \tag{1}\\
w(x)=0, \quad x \in \partial \Omega \tag{2}
\end{gather*}
$$

where Ω is an open subset of $\mathbb{R}^{n}, n \geq 1$, and $\partial \Omega$ is its boundary. The function $f(x)$ is twice continuously differentiable function on Ω and function $\varphi(z), 0 \leq z<\infty$, satisfies the condition

$$
\varphi(z) \geq \alpha>0
$$

In [1] the problem (1), (2) is studied when $n=1$. For the solution is used Chipot's approach and accuracy of the method is discussed. Here also are given numerical examples. In [2] the problem (1), (2) is studied when $n=2$. For the solution is used Chipot's approach and accuracy of the method is discussed.

In this paper, we use Chipot's approach to solve the problem (1), (2). For this purpose we develop the computer program in Matlab. Furthermore, we give the numerical example for $n=3$.

References

[1] N. Kachakhidze, N. Khomeriki, J. Peradze, Z. Tsiklauri, Chipot's method for a one-dimensional Kirchhoff static equation. Numer. Algorithms 73 (2016), no. 4, 1091-1106.
[2] J. Peradze, On the accuracy of the method of solution of a boundary value problem for a two-dimensional Kirchhoff equation. Semin. I. Vekua Inst. Appl. Math. Rep. 35 (2009), 107-113.

Line and Grid Composed Methods

Liana Karalashvili
University of Georgia, Tbilisi, Georgia
email: liana.qaralashvili@yahoo.com

Unlike line and grid classical methods to solve partial differential equations line and grid methods based on the high accuracy Sh. Mikeladze formula (so-called method without saturation), which approximation and convergence order depends on the number of knots (lines) are considered. The composed methods give possibility to use discretization of the received (in the result of the first discretization) subintervals the second time. This discretization process can be repeated so many times till the necessary number of simultaneous algebraic or ordinary differential equations is received. In the case of the composed method of lines first discretization by m inner knots gives m simultaneous ordinary differential equations. In the case of the composed grid method (first discretization according both variables) gives $m n\left(m^{2}\right)$ simultaneous algebraic equations. In the result of using composed method several times, the number of the equations and variables increases in a square of times of each use. Usage of the composed method influences the order of approximation and convergence.

On One Family of Separable Primary Groups

Tariel Kemoklidze
Akaki Tsereteli Kutaisi State University, Kutaisi, Georgia
email: kemoklidze@gmail.com

The family of separable primary groups, where additive group of endomorphisms ring of the group is a direct sum of additive group of separable closed unital subring and a group of small endomorphisms, is considered. Relying on the results of A. Korner and A. Moskalenko it is shown, that the cotorsion hulls of these groups are not fully transitive.

On the Cotorsion Hulls in the Class of Primary Groups

Tariel Kemoklidze, Irakli Japaridze
Akaki Tsereteli Kutaisi State University, Kutaisi, Georgia
email: kemoklidze@gmail.com

It is shown that there is the class of separable primary groups where the basic subgroup of group is unbounded, is not more than least uncountable cardinality but the class consists with nonisomorphic groups which cardinality is more than the least uncountable cardinal and the cotorsion hull of each group is not fully transitive.

Integration Mathematical and Computer Models of the Information Warfare

Nugzar Kereselidze
Department of Mathematics and Computer Sciences, Sokhumi State University Tbilisi, Georgia
email: tvn@caucasus.net; nkereselidze@sou.edu.ge

New mathematical and computer models of the Information Warfare are being considered. An attempt has been made to unify the mathematical model of attracting adepts given in the monograph of A. A. Samarskii, A. P. Mikhailov [1] with the mathematical and computer model of flows outlined in the works T. I. Chilachava, N. G. Kereselidze [2]-[4].

References

[1] A. A. Samarskii, A. P. Mikhailov, Mathematical modeling: Ideas. Methods. Examples. 2nd ed. Correction. FIZMATLIT, Moscow, 2005.
[2] T. I. Chilachava, N. G. Kereselidze, Continuous linear mathematical model of preventive information warfare. Sokhumi State University Proceedings, Mathematics and Computer Sciences 7 (2009), no. 7, 113-141.
[3] T. I. Chilachava, N. G. Kereselidze, Non-preventive continuous linear mathematical model of information warfare. Sokhumi State University Proceedings, Mathematics and Computer Sciences 7 (2009), no. 7, 91-112.
[4] T. I. Chilachava, N. G. Kereselidze, Mathematical modeling of the Information Warfare. Georgian Electronic Scientific Journal: Computer Science and Telecommunications, 2010, no. 1 (24), 78-105.

Quantum-Chemical Study of the Propensity of the Amino Acid Pairs for the Peptide Bond Formation

Jumber Kereselidze ${ }^{1}$, George Mikuchadze ${ }^{2}$
${ }^{1}$ Department of Chemistry, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia email: jumber.kereselidze@tsu.ge
${ }^{2}$ National Environmental Agency of Georgia, Tbilisi, Georgia
email: gmikuchadze@gmail.com

The Modern method of quantum chemistry - Density Functional Theory (DFT) is used for the quantitative description of the formation of peptide bond between amino acid pairs. The formula of propensity of amino acids $(K p)$ for the peptide bond formation is constructed, which in turn is a function of six variables: both length and order of the CO and NH bonds, $\left(R_{C O}, R_{N H}, P_{C O}, P_{N H}\right)$, the activation energy for the formation of the peptide bond $\left(\Delta E^{\#}\right)$, and difference between charges of the carbon atom of the carbonyl group and the amino nitrogen atom (Δq). By means of the proposed formula the $K p$ parameter for 400 amino acid pairs was calculated. Among them only 26 amino acid pairs are most likely to take part in the synthesis of proteins that have been selected based on the value of the parameter $K p$. This approach may have important meaning for quantitative description of the amino acid sequences in proteins.

On Hilbert H^{*}-Bimodules

Mahnaz Khanehgir, Marzieh Moradian Khaibary
Department of Mathematics, Mashhad Branch, Islamic Azad University Mashhad, Iran
email: mkhanehgir@gmail.com

In this paper, we introduce the notion of Imprimitivity Hilbert H^{*}-bimodule and describe some properties of it. Moreover, we show that if \mathcal{A} and \mathcal{B} are proper and commutative H^{*}-algebras, ${ }_{\mathcal{A}} E_{\mathcal{B}}$ is a Hilbert H^{*}-bimodule and e_{1} is a minimal projection in \mathcal{A} with ${ }_{\mathcal{A}}[x \mid x]=e_{1}$ for some $x \in \mathcal{A}$, then $[x \mid x]_{\mathcal{B}}$ is a minimal projection in \mathcal{B}, too. Furthermore, the existence of orthonormal bases for such spaces are studied.

References

[1] W. Ambrose, Structure theorems for a special class of Banach algebras. Trans. Amer. Math. Soc. 57 (1945), 364-386.
[2] D. Bakić, B. Guljaš, Operators on Hilbert H^{*}-modules. J. Operator Theory 46 (2001), no. 1, 123-137.
[3] F. F. Bonsall, J. Duncan, Complete normed algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. Springer-Verlag, New York-Heidelberg, 1973.
[4] M. Khanehgir, M. Amyari, M. Moradian Khibary, Pullback diagram of Hilbert modules over H^{*}-algebras. Kragujevac J. Math. 39 (2015), no. 1, 21-30.

Some Aspects of Using the Internet in the Process of Learning Mathematics

Marina Kharazishvili
Ilia State University, Tbilisi, Georgia
email: marina.kharazishvili@iliauni.edu.ge; kharaz777@gmail.com

It's no secret that many students have problems with mastering mathematical subjects. To advance their knowledge in mathematics, it is very important not only to keep in mind an appropriate theoretical material, but also to learn how to solve problems independently. By solving mathematical problems of varying degrees of complexity, students will be able
to gain a useful experience, as well as to assess the level of their knowledge. Actually, this is the best way to prepare for colloquiums, exams or math tests.

Nowadays, the Internet can substantially help students in this respect, because there are special sites for self-studying mathematics. These sites suggest different options. As a rule, on these sites students can find:

- various problems, solving which they can improve their mathematical skills;
- online calculators by using which students will be able to enter the task data and get an answer in the form of a detailed solution;
- theoretical material concerning various mathematical themes with relevant examples;
- manual material including different tables and lists of formulas that are often used in the process of solving mathematical problems.

Therefore, for students who study mathematics courses, it is necessary to provide them with information about the most well-known Internet resources of mathematical orientation:

- sites containing theoretical information (e.g., in the form of lecture courses);
- sites containing various mathematical packages and information about their usage;
- sites that contain examples, tasks and their solutions.

Undoubtedly, the Internet is an underutilized resource, but the academic personal of universities needs to better study these opportunities in order to use them for improving students knowledge of mathematics.

Summarizing all the said above, the Internet becomes a significant resource in mathematics education. The diversity and interactive nature of the materials presented by Internet sites enable students to learn and visualize mathematical notions with the aid of a new methodology.

Interaction of the Zonal Flows with the Dift Waves in the Ionosphere

Oleg Kharshiladze, Khatuna Chargazia
I. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: khatuna.chargazia@gmail.com

Influence of the large-scale zonal flows and magnetic fields on the relative short-scale ULF electromagnetic waves in the dissipative ionosphere in the presence of a smooth inhomogeneous zonal wind (shear flow) is studied. A broad spectrum of Alfvenic-like electromagnetic fluctuations appears from electromagnetic drift turbulence and evidence of the existence of magnetic fluctuations in the shear flow region is shown in the experiments. In present work one possible theoretical explanation of the generation of electromagnetic fluctuations in DW-ZF systems is given. We show that the transient growth substantially exceeds the growth of the classical dissipative trapped-particle instability of the system. Excitation of electromagnetic fluctuations in such systems leads to the Attenuation-suppression of the short-scale turbulence. Also the numerical treatment of the satellite data is carried out. Influence of Bursty Bulk Flow (BBF) on the ionospheric plasma is investigated. It is shown, that it causes essential thinning of the plasma sheet at developing stage during passage inside it, but at the recovery stage plasma sheet thickening occurs and its size exceeds much the initial one.

About Some Application of Data Mining for Managements

Aben Khyoles
Bar Ilan University, Ramat Gan, Israel
email: abenkh@gmail.com

In the report I will tell how to use real-statistic program for excel during teaching research methods for managements.

Stability of Thin-Walled Spatial Systems with Discontinuous Parameters

Gela Kipiani
Georgian Aviation University, Tbilisi, Georgia
email: gelakip@gmail.com

It is developed t3eh method of analysis of having holes and cuts shells and plates in conditions of linear and non-linear deformation that gives the possibility to determine with same precision the stresses and moments in continual area as well as in adjacent of edges and vertexes.

The obtained for analysis of having ribs and breaks shells are design formulae gives the possibility to describe all singularities of variable of the components of mode of deformation in adjacent of violation of regularity, express changes and distribution of stresses and moments in process of loading.

It is studied the simplified variant of solution, methodology for reducing of having equivalent bending stiffness single-layered plate that leads to essential simplification of calculations without significant losses in precision. Firstly are solved new problems of analysis of having cuts and holes sandwich plates in conditions of different supporting on edges and various specific loadings.

 $(0,1)-{ }^{\circ} 9$.

Amply Cofinitely e-Supplemented Modules

Berna Koşar ${ }^{1}$, Celil Nebiyev ${ }^{1}$, Ayten Pekin ${ }^{2}$
${ }^{1}$ Department of Mathematics, Ondokuz Mayıs University
Kurupelit-Atakum/Samsun, Turkey
email: bernak@omu.edu.tr
${ }^{2}$ Department of Mathematics, Istanbul University
Vezneciler-Istanbul, Turkey
email: cnebiyev@omu.edu.tr

In this work, amply cofinitely e-supplemented modules are defined and some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of an amply cofinitely e-supplemented module are amply cofinitely e-supplemented.

Results

Definition 1. Let M be an R-module. If every cofinite essential submodule of M has ample supplements in M, then M is called an amply cofinitely e-supplemented module.

Lemma 2. If M is a π-projective and cofinitely e-supplemented module, then M is an amply cofinitely e-supplemented module.

Corollary 3. If M is a π-projective and cofinitely e-supplemented module, then M is an amply cofinitely e-supplemented module.
Lemma 4. Let R be any ring. Then every R-module is cofinitely e-supplemented if and only if every R-module is amply cofinitely e-supplemented.

Key words: Cofinite submodules, essential submodules, small submodules, supplemented modules.

References

[1] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory. Frontiers in Mathematics, Birkhäuser, Basel, 2006.
[2] B. Koşar, C. Nebiyev, Cofinitely e-supplemented modules. Presented in VII International Joint Conference of Georgian Mathematical Union \& Georgian Mechanical Union, Continuum Mechanics and Related Problems of Analysis, Dedicated to 125th birthday anniversary of academician N. Muskhelishvili, Batumi, Georgia, 2016.
[3] R. Wisbauer, Foundations of module and ring theory. Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.

An Application of Ontology Modeling in Semantic Web

Lia Kurtanidze
St. Andrew the First-Called Georgian University of the Patriarchate of Georgia Tbilisi, Georgia
email: lia.kurtanidze@gmail.com

From its beginning, development of semantic web technologies was closely related to the Internet. The name itself, Semantic Web, was introduced by Tim Berners-Lee, who was a founder of this scientific direction. The main idea of the semantic web is to have knowledge available for wide auditory (the purpose of WWW itself) and to utilize this knowledge by developing systems for searching, browsing and evaluation. Thus, main technologies in semantic web are knowledge representation formats and different forms of knowledge.

Semantic Web is a collection of different technologies, where most of them is already standardized. The main purpose of these technologies is to describe semantic content of the web, i.e. their meaning and sense, in the format understood by computers. Such descriptions are called ontologies and the languages, on which ontologies are written - the ontology languages. Nowadays, the main research is concentrated on the ontology and logic layers.

The purpose of this talk is to present the author's research project which is going to be implemented together with her high-school students. The aim of the project is to build and implement an ontology model of Georgian touristic places. The resulting ontology potentially can be integrated in the semantic search engines.

Regional Climate Prediction System for South Caucasus Region

Nato Kutaladze ${ }^{1}$, Nino Shareidze ${ }^{2}$
${ }^{1}$ National Environmental Agency, Tbilisi, Georgia
email: cwlam08@gmail.com
${ }^{2}$ San Diego State University Georgia, Tbilisi, Georgia
email: cassiemolko@gmail.com

To assess the socio-economic effects caused by climate change currently and in future individual countries need climate change scenarios provided by mathematical modelling of
the climate system according to different socioeconomic scenarios defining the conditions of development of the society in the future. For South Caucasus region Regional Climate Model (RegCM4) was used. A model was run on the GRENA's cluster. Simulation was done ($\mathrm{N} 40^{\circ} 30^{\prime}-47^{\circ}$; W $39^{\circ} 25^{\prime}-44^{\circ}$) with maximal horizontal resolution of 20 km , admissible in the area. Initial and boundary conditions were taken from EH5OM (MPI, Hamburg), global model output data (existing from 1941-2100) and A1B socio-economic scenarios. The simulation was done to cover 1959 to 2100 inclusively. Before assessing future trend of climate parameters model was bias corrected and uncertainties evaluated. Besides of changes in multiyear mean values of main climate parameters likely changes in extremes also have been analyzed. This extreme indices such as the number of hot and frost days, number of heavy rains, duration of heating and cooling periods also vegetation periods and etc. are very important for agriculture, energy, health and almost all sectors.

Acknowledgment. The research leading to these results has been co-funded by the European Commission under the H2020 Research Infrastructures contract no. 675121 (project VI-SEEM).

 ๙ggby币

[1] Теория расписаний и вычислительные машины (под редакцией Э. Г. Коффмана). Наука, Москва, 1984.
[2] V. S. Tanaev, V. S. Gordon, Y. M. Shafransky, Scheduling theory. Single-stage systems. Translated from the 1984 Russian original and revised by the authors. Mathematics and its Applications, 284. Kluwer Academic Publishers Group, Dordrecht, 1994.
[3] K. Kutkhashvili, V. Gabisonia, The algorithm for a problem of the scheduling theory considering two criterion. Georgian Academy of Sciences, A. Eliashvili Institute of Control Systems, Proceedings, Tbilisi, no. 13, 2009.

A Note on Relationships between Moments

Vakhtang Kvaratskhelia
N. Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
email: v.kvaratskhelia@gtu.ge

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\xi: \Omega \rightarrow \mathbb{R}^{1}$ be a random variable and \mathbb{E} be the mathematical expectation symbol.
Theorem. Let $p>q>0$ be any numbers and for some constant $C \geq 1$ we have

$$
\left\{\mathbb{E}|\xi(\omega)|^{p} \mathbb{P}(d \omega)\right\}^{1 / p} \leq C\left\{\mathbb{E}|\xi(\omega)|^{q} \mathbb{P}(d \omega)\right\}^{1 / q}
$$

Then for any $r, s, 0<r, s \leq p$, the following inequality is fulfilled

$$
\left\{\mathbb{E}|\xi(\omega)|^{r} \mathbb{P}(d \omega)\right\}^{1 / r} \leq C^{\beta}\left\{\mathbb{E}|\xi(\omega)|^{s} \mathbb{P}(d \omega)\right\}^{1 / s}
$$

where

$$
\beta= \begin{cases}0, & \text { if } 0<r \leq s \leq p \\ 1, & \text { if } q \leq s<r \leq p \\ \frac{q(p-s)}{s(p-q)}, & \text { if } 0<s<q<r \leq p, \\ \frac{p(q-s)}{s(p-q)}, & \text { if } 0<s<r \leq q\end{cases}
$$

This result improves the result of R. Fukuda [1]. This inequality is very useful in many problems of probability theory.

References

[1] R. Fukuda, Exponential integrability of sub-Gaussian vectors. Probab. Theory Related Fields 85 (1990), no. 4, 505-521.

Interactive Mathematics Based on Technology "Mathematicos"

Temur Mushni Kvaratskheliya
Mathematicos, LTD, Russia
email: mathematicos.pro@gmail.com

The report describes the possibilities of using technology "Mathematicos" to create interactive lessons with built-in online teacher, accompanying the student's actions in solving problems, performing detailed, step-by-step assistance. We propose technics for learning lessons, solving problems and exercises through mediation and under control of the virtual teacher. We show that incorporation of such machine teacher as a fullyfledged technological participant in the process of everyday learning provides a significant improvement in the individual indicators of students.

e-Infrastructure for Research and Education in Georgia

Ramaz Kvatadze
Georgian Research and Educational Networking Association (GRENA) Tbilisi, Georgia
email: ramaz@grena.ge

The status of network and computing infrastructure and available services for research and education community of Georgia are presented. The network services provided by

GRENA to universities and research institutions are: Internet and GEANT connectivity, eduroam - educational roaming, eduGAIN - authentication and authorization, CERT Computer Emergency Response Team, Intrusion Detection/Prevention systems IDS/IPS, etc.

GRENA computational resources consists of Grid (distributed computing) GE-01GRENA site included in European Grid infrastructure and Virtualization facility. Computing resources used by the research teams working in weather research and forecasting, climate modelling, life sciences and computational chemistry.

Currently development e-Infrastructure and services is performed in the framework of European Commission projects: EaPConnect, GN4-2 Research and Education Networking - GÉEANT and VRE for regional Interdisciplinary communities in Southeast Europe and the Eastern Mediterranean. Results of these research and developments are briefly presented.

On the Exactness of the Unknown Density Approximation by a Nonparametric Estimate Constructed by Conditionally Independent Observations

Z. Kvatadze ${ }^{1}$, B. Phardiani ${ }^{1}$, T. Shervashidze ${ }^{2}$
${ }^{1}$ Department of Mathematics,Georgian Technical University Tbilisi, Georgia
email: zurakvatadze@yahoo.com; beqnufarjiani@yahoo.com

${ }^{2}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: sher@rmi.ge

We consider a two-component stationary (in a narrow sense) sequence $\left\{\xi_{i} X_{i}\right\}_{i \geq 1}$, $\left\{X_{i}\right\}_{i \geq 1}$ is a conditionally independent sequence, while $\left\{\xi_{i}\right\}_{i \geq 1}$ is a sequence of equally distributed independent random variables. $\xi_{i}=\sum_{k=1}^{m} \alpha_{k} I_{\left(\xi_{i}=\alpha_{k}\right)}, P\left(\xi_{i}=\alpha_{k}\right)=P_{k}, k=\overline{1, m}$. The distributions $P_{\left(\xi_{i}=\alpha_{k}\right)=\alpha_{k}}$ have unknown densities $f_{k}(x), k=\overline{1, m}$. The exactness of the approximation of the unknown density by the estimate $\widehat{f}(x)=\sum_{k=1}^{m} P_{k} f_{k}(x)$ obtained by conditionally independent observations $\widehat{f}_{n}(x)$ is established $x_{1}, x_{2}, \ldots, x_{n}$.

On Consistent Estimator of a Useful Signal in Ornstein-Uhlenbeck Model in $C[-l, l[$

Levan Labadze, Gogi Pantsulaia
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
email: levanlabadze@yahoo.com

We consider a transmission process of a useful signal in Ornstein-Uhlenbeck stochastic model in $C[-l, l[$ defined by the stochastic differential equation

$$
d \Psi(t, x, \omega)=\sum_{n=0}^{2 m} A_{n} \frac{\partial^{n}}{\partial x^{n}} \Psi(t, x, \omega) d t+\sigma d W(t, \omega)
$$

with initial condition:

$$
\Psi(0, x, \omega)=\Psi_{0}(x) \in F D^{(0)}[-l, l[,
$$

where $m \geq 1,\left(A_{n}\right)_{0 \leq n \leq 2 m} \in \mathbb{R}^{+} \times \mathbb{R}^{2 m-1},\left((t, x, \omega) \in\left[0,+\infty\left[\times\left[-l, l[\times \Omega), \sigma \in \mathbb{R}^{+}\right.\right.\right.\right.$, $C[-l, l[$ is Banach space of all real-valued bounded continuous functions on $[-l, l[$, $F D^{(0)}[-l, l[\subset C[-l, l[$ denotes the class of all real-valued bounded continuous functions on $\left[-l, l\left[\right.\right.$ whose Fourier series converges to himself everywhere on $\left[-l, l\left[,(W(t, \omega))_{t \geq 0}\right.\right.$ is a Wiener process and $\Psi_{0}(x)$ is an useful signal.

By use a sequence of transformed signals $\left(Z_{k}\right)_{k \in \mathbb{N}}=\left(\Psi\left(t_{0}, x, \omega_{k}\right)\right)_{k \in \mathbb{N}}$ at moment $t_{0}>0$, consistent and infinite-sample consistent estimates of the useful signal Ψ_{0} is constructed under assumption that parameters $\left(A_{n}\right)_{0 \leq n \leq 2 m}$ and σ are known.

Pareto Efficiency and Achievable Distribution
Dali Magrakvelidze
Department of Computing Mathematics, Georgian Technical University Tbilisi, Georgia
email: dali.magraqvelidze@gmail.com

It is interesting to answer the following question, how successfully achieves concurrent market the Pareto efficiency. The distribution method is a Pareto efficient if there is alternative distribution where no one will suffer, but even certain number of customers condition will be improved. Pareto-efficiency can be described as the distribution, where 1. there is no ability to improve all's condition; or 2 . there are no ways to improve
condition of any individual without worsening other individuals condition. Distribution is achievable, if the total amount of consumptions of each product is equal to its total number [1]: Here is some equation

$$
\begin{aligned}
& x_{A}^{1}+x_{B}^{1}=\omega_{A}^{1}+\omega_{b}^{1}, \\
& x_{A}^{2}+x_{B}^{2}=\omega_{A}^{2}+\omega_{B}^{2} .
\end{aligned}
$$

If we use differential calculus for description of Pareto efficiency distribution, the formula of maximization will get the following form:

$$
\max _{x_{A}^{1}, x_{A}^{2}, x_{B}^{1}, x_{B}^{2}} U_{A}\left(x_{A}^{1}, x_{A}^{2}\right),
$$

when

$$
u_{B}\left(x_{B}^{1}, x_{B}^{2}\right)=\bar{u}, x_{A}^{1}+x=\omega^{1} ; x_{A}^{2}+x_{B}^{2}=\omega^{2} .
$$

we can solve this problem by composing Lagrangian, which will have such form:

$$
L=u_{A}\left(x_{A}^{1}, x_{B}^{2}\right)-\lambda\left(u_{B}\left(x_{B}^{1}, x_{B}^{2}\right)-\bar{u}\right)-\mu\left(x_{A}^{1}+x_{B}^{1}-\omega^{1}\right)-\mu_{2}\left(x_{A}^{2}+x_{B}^{2}-\omega^{2}\right) .
$$

If we differentiate for each commodity and make some kind of transformations we will get:

$$
\begin{aligned}
M R S_{A} & =\frac{\partial u_{A} / \partial x_{A}^{1}}{\partial u_{A} / \partial x_{A}^{2}}=\frac{\mu_{1}}{\mu_{2}} \\
M R S_{A} & =\frac{\partial u_{B} / \partial x_{B}^{1}}{\partial u_{B} / \partial x_{B}^{2}}=\frac{\mu_{1}}{\mu_{2}}
\end{aligned}
$$

Keywords: Pareto efficiency, distribution method, substitution marginal rate, Lagrangian.

References

[1] A. U. Thor, An interesting paper on operator theory. Integral Equations Oper. Theory 1 (1927), 372-391.
[2] S. O. Meone, The standard book on linear algebra. Springer Verlag, 1999.

On the Norm Estimates of Fourier Integrals Summability Means in Weighted Grand Lebesgue Space on the Axis

Dali Makharadze ${ }^{1}$, Tsira Tsanava ${ }^{2}$
${ }^{1}$ Batumi Shota Rustaveli State University, Batumi, Georgia
email: dali_makharadze@mail.ru
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia
email: tsanava@rmi.ge

Let $1<p<\infty, \theta>0$. Weighted grand Lebesgue space on $(-\infty, \infty)$ is defined as

$$
\begin{aligned}
\mathcal{L}_{W}^{p, \theta}\left(R^{1}\right)= & \left\{f:\|f\|_{\mathcal{L}_{W}^{p, \theta}}\right. \\
& \left.=\sup _{0<\varepsilon<p-1}\left(\varepsilon^{\theta} \int_{-\infty}^{+\infty}|f(x)|^{p-\varepsilon} w(x)\left(\sqrt{1+\left|x^{2}\right|}\right)^{-\alpha \varepsilon} d x\right)^{\frac{1}{p-\varepsilon}}<+\infty\right\}
\end{aligned}
$$

where $\alpha>p$. For definition see [1, p. 800].
We assume that the weight w belongs to the well-known Cesàro Muckenhoupt class.
The goal of our talk is to present the uniform estimates in $\mathcal{L}_{W}^{p, \theta}(-\infty, \infty)$ of the norms Fourier integral's Cesàro and Abel-Poisson summability means. The norm convergence problems will be treated in some subspaces of aforementioned spaces. For the analogous results in weighted Lebesgue spaces with variable exponent, we refer the readers to [2].

MSC 2000: 42B20, 47B38.
Keywords: Fourier integrals, weighted grand Lebesgue space.

References

[1] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces. Vol. 2. Variable exponent Hölder, Morrey-Campanato and grand spaces. Operator Theory: Advances and Applications, 249. Birkhäuser/Springer, [Cham], 2016.
[2] V. Kokilashvili, I. Nanobashvili, Boundedness criteria for the majorants of Fourier integrals summation means in weighted variable exponent Lebesgue spaces and application. Georgian Math. J. 20 (2013), no. 4, 721-727.

On Stochastic Differential Equation Driven by the Cylindrical Wiener Process

Badri Mamporia
N. Muskhelishvili Institute of Computational Mathematics of the
Georgian Technical University, Tbilisi, Georgia
email: badrimamporia@yahoo.com

We consider the problem of existence and uniqueness of the solution of the stochastic differential equation driven by the cylindrical Wiener process. According to our approach, We construct the corresponding stochastic differential equation in the space of the generalized random elements, find the generalized solution as a generalized random process and the question of existence of the solution of the main equation in a Banach space we reduce to the well known problem of decomposability of the generalized random elements (see [1]).

References

[1] B. Mamporia, Stochastic differential equations in a Banach space driven by the cylindrical Wiener process. Trans. A. Razmadze Math. Inst. 171 (2017), no. 1, 76-89.

Liouville Type Theorems for First Order Singular Systems

Nino Manjavidze ${ }^{1}$, George Makatsaria ${ }^{2}$, Tamaz Vekua ${ }^{3}$
${ }^{1}$ Department of Natural Sciences and Engineering, Ilia State University, Tbilisi, Georgia email: nino.manjavidze@iliauni.edu.ge
${ }^{2}$ St. Andrew the First Called Georgian University, Tbilisi, Georgia
${ }^{3}$ Georgian Technical University, Tbilisi, Georgia

The present work deals with the interpretation of uniqueness theorem of the theory of analytic functions, its generalization and some applications.

Some Existence and Uniqueness Results for Fractional Differential Equations with Caputo-Fabrizio Derivative

H. R. Marasi
Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
email: marasi@tabrizu.ac.ir

Compared with integer order, a significant feature of a fractional order differential operator is its nonlocal behavior. In other words, the future state of a process described by fractional derivative depends on its current state as well as its past states. Therefore, by making use of differential equations of arbitrary order, one can describe the memory and hereditary properties of various important materials and systems. So, in recent years fractional differential equations have been paid of great interest and there appeared new areas for applications of initial and boundary value problems of such equations. There are different definitions for fractional derivative and recently some new definitions for derivative of arbitrary order have been updated.

The new Caputo-Fabrizio fractional derivative, with no singular kernel, was defined as the following

Definition 1. For a function $f \in H^{1}(a, b)$ the Caputo-Fabrizio derivative of fractional order $\alpha \in[0,1]$ is defined as

$$
D_{t}^{\alpha}(f(t))=\left(\frac{M(\alpha)}{1-\alpha}\right) \int_{a}^{t} f^{\prime}(x) \exp \left[-\alpha \frac{t-x}{1-\alpha}\right] d x
$$

such that $M(\alpha)$ is a normalization function under the conditions $M(0)=M(1)=1$.
Definition 2. The fractional arbitrary order integral of a function $f \in H^{1}(a, b)$ is defined as follows

$$
I_{\alpha}^{t}(f(t))=\frac{2(1-\alpha)}{(2-\alpha) M(\alpha)} f(t)+\frac{2 \alpha}{(2-\alpha) M(\alpha)} \int_{0}^{t} f(s) d s, \quad t \geq 0
$$

Caputo-Fabrizio fractional derivative has many significant properties such as its ability in describing matter heterogeneities and configurations with different scales. The existence of solutions for nonlinear differential equations has been studied using the techniques of nonlinear analysis such as fixed point results [1, 2] and stability.

In this paper, we consider the fractional differential equations via the new fractional derivative of Caputo-Fabrizio and study some existence and uniqueness results for such equations.

References

[1] H. Marasi, H. Piri, H. Aydi, Existence and multiplicity of solutions for nonlinear fractional differential equations. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4639-4646.
[2] H. R. Marasi, H. Afshari, C. B. Zhai, Some existence and uniqueness results for nonlinear fractional partial differential equations. Rocky Mountain J. Math. 47(2017), no. 2, 571-585.

Teaching a Concept

Ia Mebonia

Department of Exact Sciences, Georgian-American School, Tbilisi, Georgia
email: iamebonia@gmail.com

We use concepts for teaching any subject, often without even realizing if student adequately perceives them or not. Usually concepts are the foundation on which further knowledge is built, so the success of the teaching process is largely dependent on the whether the perception of concept is correct or not. The author discusses different methods of teaching (specificity, generalization) and common mistakes that are made during the teaching process, such as development of inappropriate perception in the mind of student caused by limited number of samples; Analysis of sample schemes of hierarchical characteristic features of concepts (cause and effect), specifics of using these schemes and based on them the possible problems related to making alternative definitions; A sample of Concept Map isexamined, such as concepts' visible succession scheme and didactic peculiarities of its usage.

References

[1] T. Buachidze, Georgian Soviet Encyclopedia, v. 11. (Georgian) Tbilisi, 1987.
[2] В. А. Любецкий, Основньие понятия школьнойматематики. Просвещение, Москва, 1987.

Simulation of Air Pollutant Distribution Over the Caucasus on the Bases of WRF-Chem Model

George Mikuchadze
National Environmental Agency of Georgia, Tbilisi, Georgia
email: gmikuchadze@gmail.com

This study evaluates the spatiotemporal distribution of dust over Caucasus region using WRF-Chem model. The model runs in operational mode on GRENA's High Performance Computing (HPC) center. It makes 3-days forecast of mineral dust distribution and creates maps for the distribution of the particles with 2.4 um in diameter over the Caucasus domain for the 4 different values of height with 1 hour pitch. For the initial and boundary conditions the model uses Global Forecast System (GFS) model data.

Acknowledgment. The research leading to these results has been co-funded by the European Commission under the H2020 Research Infrastructures contract no. 675121 (project VI-SEEM).

Software of Distributed Computing Network Monitoring and Analysis

Zurab Modebadze
Parliament of Georgia, IT department, Tbilisi, Georgia
email: zurab@tsu.ge

The brief description of programming for controlling and analyzing information about functioning distributed computing network is presented. Operating in the menu mode an administrator and engineer are consider a network temporary state, tracing map of token and statistic of commands, used by users of the network. Using screen menu mode of operation, the user can copy, rename, restore, find and change phrases, to print files. The program could be easily transferred to any computer of CP/M operation system. Operating in the menu mode, the user can specify a node architecture, the number of ports to be serviced, and give parameters for the initial adjusting of the ports for specific equipment. The user can set up a connection with the nodes hooked up to the computer, load the programs prepared for the further debugging, look through, copy and modify the files with the net software.

A Characterization of Bigroups of Operations

Yu. M. Movsisyan
Department of Mathematics and Mechanics, Yerevan State University
Yerevan, Armenia
email: yurimovsisyan@yahoo.com

By analogy of bilattices [1]-[3] we consider the concepts of a bisemigroup, a bimonoid, a De Morgan bisemigroup and a bigroup.

A bimonoid $Q(\cdot, \circ)$ with identity elements 0 (for operation \cdot) and 1 (for operation \circ) is called a bigroup, if for every $x \in Q$:

$$
0 \circ x=0, \quad 1 \cdot x=1,
$$

and the following conditions are valid:
(a) $Q \backslash\{1\}$ is a group with an identity element 0 under the multiplication •;
(b) $Q \backslash\{0\}$ is a group with an identity element 1 under the multiplication \circ;

A bigroup of order >3 is called non-trivial.
The set $O_{p}^{(2)} Q$ of all binary operations on the set Q is a bimonoid under the following operations:

$$
\begin{align*}
f \cdot g(x, y) & =f(x, g(x, y)) \tag{1}\\
f \circ g(x, y) & =f(g(x, y), y) \tag{2}
\end{align*}
$$

in which the identity elements are the identical operations δ_{2}^{2} and δ_{2}^{1}, where $\delta_{2}^{1}(x, y)=x$, and $\delta_{2}^{2}(x, y)=y$ for all $x, y \in Q$. Any subset $S \subseteq O_{p}^{(2)} Q$ which is closed under these two operations is called a bisemigroup of operations (on the set Q). The bisemigroup of operations (on the set Q) is called a bimonoid of operations (on the set Q) if it contains the identical operations δ_{2}^{1} and δ_{2}^{2}.

The bimonoid S of operations (on the set Q) is a bigroup, if both of the following conditions are valid:
(c) $S \backslash\left\{\delta_{2}^{1}\right\}$ is a group with an identity element δ_{2}^{2} under the multiplication (1);
(d) $S \backslash\left\{\delta_{2}^{2}\right\}$ is a group with an identity element δ_{2}^{1} under the multiplication (2);

Such bigroup is called a bigroup of operations (on the set Q).
We give a local characterization of bigroups of operations.
Acknowledgement. This research is supported by the State Committee of Science of the Republic of Armenia, grants: 10-3/1-41 and 15T-1A258.

References

[1] M. C. Fitting, Bilattices in logic programming. In: G. Epstein (Ed.), Proc. 20th Internat. Symp. on Multi-Valued Logic (IEEE, New York, 1990), pp. 63-70.
[2] M. L. Ginsberg, Multivalued logics: a uniform approach to reasoning in artificial intelligence. Comput. Intell. 4 (1988), no. 3, 265-316.
[3] Yu. M. Movsisyan, A. B. Romanowska, J. D. H. Smith, Superproducts, hyperidentities, and algebraic structures of logic programming. J. Combin. Math. Combin. Comput. 58 (2006), 101-111.

A Characterization of the Belousov Variety

Yu. M. Movsisyan ${ }^{1}$, M. A. Mando ${ }^{2}$
${ }^{1}$ Department of Mathematics and Mechanics, Yerevan State University
Yerevan, Armenia
email: movsisyan@ysu.am
${ }^{2}$ Al-Baath University, Syria
email: mandomufeed@yahoo.com

The concept of Belousov quasigroup and Belousov variety are introduced and it is proved that the nontrivial Belousov quasigroup has at least five elements. The variety of Belousov quasigroups is a subvariety of the Mikado variety. The Belousov variety has a solvable word problem and is congruence-permutable. Every Belousov quasigroup of prime order is a simple algebra. However the solution of the following problem is open: to which loops are Belousov quasigroups isotopic?

Numerical Solution of the Non-Linear Biharmonic Equation for Different Boundary Conditions

Zahir Muradoglu
Department of Mathematics, Kocaeli University, Kocaeli, Turkey
email: zahir@kocaeli.edu.tr

Biharmonic equation plays an important role in different scientific disciplines, but it is difficult to solve due to the existing fourth order derivatives. They arise in several areas of mechanics such as two dimensional theory of elasticity and the deformation of elastic and elasto-plastic plates. The mathematical model related to elasto-plastic bending plate can be written by the non-linear biharmonic equation.

Various approaches for the numerical solution of biharmonic equation have been considered in the literature over several decades. In this study, bending problem of the plate which is an elasto-plastic and homogeneously isotropic incompressible features is studied. The main purpose of this work is obtain numerical solution of the nonlinear biharmonic equation corresponding to the bending problem of the elasto-plastic plate with different boundary conditions by the finite difference method.

The study is contained that mathematical model of bending problem of non-linear plate, its finite difference approach and numerical solution. To check the correctness of the numerical solutions, a test function which is proved conditions of the problem is used.

The numerical results obtained by the computational experiments have interesting aspects of both mathematical and engineering points of view. The presented numerical examples show the effectiveness of the given approach.

Study on Meromorphic Functions Based on Subordination

Shahram Najafzadeh
Department of Mathematics, Payame Noor University, Iran email: najafzadeh1234@yahoo.ie

This paper investigates sharp coefficient bounds, integral representation, extreme point, and operator properties of a certain class associated with functions which are meromorphic in the punctured unit disk.

References

[1] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients. Rend. Mat. Appl. (7) 11 (1991), no. 2, 209-219.
[2] N. E. Cho, S. H. Lee, Sh. Owa, A class of meromorphic univalent functions with positive coefficients. Kobe J. Math. 4 (1987), no. 1, 43-50.
[3] F. Ghanim, M. Darus, Subordinations for analytic functions defined by the linear operator. Amer. J. Sci. Research 2 (2009), 52-59.
[4] F. Ghanim, M. Darus, Linear operators associated with a subclass of hypergeometric meromorphic uniformly convex functions. Acta Univ. Apulensis Math. Inform. No. 17 (2009), 49-60.

Amply Weak e-Supplemented Modules

Celil Nebiyev ${ }^{1}$, Hasan Hüseyin Ökten ${ }^{2}$
${ }^{1}$ Department of Mathematics, Ondokuz Mayis University Kurupelit-Atakum/Samsun, Turkey
email: cnebiyev@omu.edu.tr
${ }^{2}$ Technical Sciences Vocational School, Amasya University, Amasya, Turkey email: hokten@gmail.com

In this work, amply weak e-supplemented modules are defined and some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of a amply weak e-supplemented module are amply weak e-supplemented.
Definition. Let M be an R-module and $U \leq M$. If for every $V \leq M$ such that $M=U+V, U$ has a weak supplement V^{\prime} with $V^{\prime} \leq V$, we say U has ample weak supplements in M. If every essential submodule of M has ample weak supplements in M, then M is called an amply weak e-supplemented module.

Lemma 1. Let M be an R-module. If every submodule of M is weakly e-supplemented, then M is amply weak e-supplemented.
Lemma 2. Let R be any ring. Then every R-module is weakly e-supplemented if and only if every R-module is amply weak e-supplemented.

2010 Mathematics Subject Classification. 16D10, 16D80.
Key words and phrases. Essential submodules, small submodules, radical, supplemented modules..

References

[1] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules. Supplements and projectivity in module theory. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
[2] C. Nebiyev, Weakly e-supplemented modules, Presented in VII International Joint Conference of Georgian Mathematical Union \& Georgian Mechanical Union, Continuum Mechanics and Related Problems of Analysis, Dedicated to 125-th birthday anniversary of academician N. Muskhelishvili, Batumi, Georgia, 2016.
[3] R. Wisbauer, Foundations of module and ring theory. Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.

ET-Small Submodules
Celil Nebiyev ${ }^{1}$, Hasan Hüseyin Ökten ${ }^{2}$
${ }^{1}$ Department of Mathematics, Ondokuz Mayis University, Kurupelit-Atakum
Samsun, Turkey
email: cnebiyev@omu.edu.tr
${ }^{2}$ Technical Sciences Vocational School, Amasya University, Amasya, Turkey
email: hokten@gmail.com

Let M be an R-module and $T \leq M . A$ submodule K of M is called $E T$-small in M, denoted by $K<_{E T} M$, in case for any essential submodule X of $M, T \leq X+K$ implies that $T \leq X$. In this work, some properties of these submodules are investigated.

Proposition 1. Let M be an R-module and $K \leq M$. Then $K<_{E M} M$ if and only if $K \lll \ll$.
Proposition 2. Let M be an R-module and $K \leq T \leq M$. Then $K<_{E T} M$ if and only if $K \ll_{e} T$.

Proposition 3. Let M be an R-module and $T, K_{1}, K_{2} \leq M$. If $K_{1}<_{E T} M$ and $K_{2}<_{E T} M$, then $K_{1}+K_{2}<_{E T} M$.

2010 Mathematics Subject Classification. 16D10, 16D80.
Key words and phrases. Essential sumbodules, small submodules, T-small submodules, e-small submodules.

References

[1] R. Beyranvand, F. Moradi, Small submodules with respect to an arbitrary submodule. J. Algebra Relat. Topics 3 (2015), no. 2, 43-51.
[2] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules. Supplements and projectivity in module theory. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
[3] B. Koşar, C. Nebiyev, N. Sökmez, g-supplemented modules. (Russian) Ukraïn. Mat. Zh. 67 (2015), no. 6, 861-864; translation in Ukrainian Math. J. 67 (2015), no. 6, 975-980.
[4] D. X. Zhou, X. R. Zhang, Small-essential submodules and Morita duality. Southeast Asian Bull. Math. 35 (2011), no. 6, 1051-1062.

A Generalization of a Relation Between Means

Alexandra Nikoleishvili ${ }^{1}$, Mikheil Nikoleishvili ${ }^{2,3}$, Vaja Tarieladze ${ }^{2,4}$
${ }^{1}$ Department of Mathematics of the First Public School of Samtredia Semtredia, Georgia
${ }^{2} \mathrm{~N}$. Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
${ }^{3}$ Department of Mathematics of the School "Pesvebi (Roots)", Tbilisi, Georgia
${ }^{4}$ Department of Computational Mathematics, Georgian Technical University Tbilisi, Georgia
email: nana-nikoleishvili@mail.ru; mikheilnikoleishvili@gmail.com; v.tarieladze@gtu.ge

Let $n>1, x_{1}, \ldots, x_{n}$ be natural numbers, $x_{1}+\cdots+x_{n}=L$, let also $L=n q+r$, where q is a natural number and $0 \leq r<n$ is an integer. Then we have

$$
x_{1} \cdots x_{n} \leq(1+q)^{r} q^{n-r}
$$

and the equality takes place if and only if $\left|x_{i}-x_{j}\right| \in\{0,1\}$ for $i, j=1, \ldots, n$.
In case when L is not divisible on n (i.e. $r \neq 0$) this inequality is a refinement of classic mean-arithmetic-mean-geometric inequality. A verification of this, even for cases $n=2$ or $n=3$, would be a good exercise for the pupils interested in mathematics.

The talk is based on [1].

References

[1] M. Nikoleishvili, V. Tarieladze, About a problem of extremum. Proceedings of the Fifth International Scientific-Practical Conference "Scientific Issues of the Modernity" at Sukhishvili Teaching University, pp. 401-403, Gori, Georgia, December 13, 2014.

About the Mathematical Model of Progression and Treatment of Autoimmune Diseases

Kakhaber Odisharia ${ }^{1}$, Paata Tsereteli ${ }^{1}$, Vladimer Odisharia ${ }^{2}$, Nona Janikashvili ${ }^{3}$
${ }^{1}$ Informatics, Mathematics and Natural Sciences School, St. Andrew the First-Called Georgian University of Patriarchate of Georgia, Tbilisi, Georgia
email: k.odisharia@gmail.com; paata.tsereteli@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: vodisharia@yahoo.com
${ }^{3}$ Department of Immunology, Faculty of Medicine, Tbilisi State Medical University Tbilisi, Georgia
email: nonajanikashvili@gmail.com

The model-based investigation of diseases is complex and evolving field. We herein report about our attempt to establish the mathematical model and its computational implementation for autoimmune diseases. Mathematical models of immune mediated disorders provide an analytic framework in which we can address specific questions concerning disease immune dynamics and the choice of treatment. Such models are actively reported in the field of tumor immunology and immunotherapy by de Phillis et al [1], [2]. At the last conference we presented mathematical model of rheumatoid arthritis. We generalized the mode for all autoimmune diseases and consider rheumatoid arthritis as a
particular case

$$
\left\{\begin{array}{l}
\frac{d J(t)}{d t}=r_{0} J(t)\left(1-b_{0} J(t)\right)-a_{0} J(t)\left(B(t)-B^{\text {norm }}\right) \\
\frac{d B(t)}{d t}=r_{1} B(t)\left(1-b_{1} B(t)\right)+c_{1} B(t) T_{h}(t)-d_{1} B(t) T_{\text {reg }}(t) \\
\frac{d T_{h}(t)}{d t}=r_{2} T_{h}(t)\left(1-b_{2} T_{h}(t)\right) \\
\frac{d T_{\text {reg }}(t)}{d t}=s_{2}-d_{2} T_{\text {reg }}(t)
\end{array}\right.
$$

Now we present generalized and improved model. Improvement includes estimation of model coefficients and the software that solves the Cauchy problem for this system and visualizes the obtained solution is developed. We also add drug component to the model. Solutions can be obtained for the case of each individual patient to decipher the disease progress and the absence of disease.

References

[1] L. G. de Pillis, A. E. Rudinskaya, C. L. Wiseman, A Validated mathematical model of cell-mediated immune response to tumor growth cancer. Cancer Res. 65 (2005), 7950-7958.
[2] L. G. de Pillis, A. Rudinskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theoretical Medicine 3 (2001), 79-100.

Numerical Computation of the Kirchhoff type Nonlinear Static Beam Equation by Iterative Method

Archil PapukashVili ${ }^{1,2}$, Zurab Vashakidze ${ }^{1,2}$

${ }^{1}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
${ }^{2}$ Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: archil.papukashvili@tsu.ge; zurab.vashakidze@gmail.com

Let us consider the nonlinear beam equation

$$
\begin{equation*}
u^{\prime \prime \prime \prime}(x)-m\left(\int_{0}^{l} u^{\prime 2}(x) d x\right) u^{\prime \prime}(x)=f\left(x, u(x), u^{\prime}(x)\right), \quad 0<x<l \tag{1}
\end{equation*}
$$

with the conditions

$$
\begin{equation*}
u(0)=u(l)=0, \quad u^{\prime \prime}(0)=u^{\prime \prime}(l)=0 . \tag{2}
\end{equation*}
$$

Here $u=u(x)$ is the displacement function of length l of the beam subjected to the action of a force given by the function $f\left(x, u(x), u^{\prime}(x)\right)$, the function $m(z)$,

$$
\begin{equation*}
m(z) \geq \alpha>0, \quad 0 \leq z<\infty \tag{3}
\end{equation*}
$$

describes the type of a relation between stress and strain.
The questions of the solvability of problem (1), (2) is studied in [1], while the problem construction of numerical algorithms and estimation of their accuracy is investigated in [2], [3]. In the present paper, in order to obtain an approximate solution of the problem (1), (2) an approach is used, which differs from those applied in the above-mentioned references. It consists in reducing the problem (1), (2) by means of Green's function to a nonlinear integral equation, to solve with we use the iterative process. The condition for the convergence of the method is established and numerical realization is obtained. The algorithm has been approved tests and the results of recounts are represented in graphics.

The authors express hearing thanks to Prof. J. Peradze for his active help in problem statement.

References

[1] T. F. Ma, Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Discrete Contin. Dyn. Syst. 2007, Dynamical systems and differential equations. Proceedings of the 6th AIMS International Conference, suppl., 694-703.
[2] J. Peradze, A numerical algorithm for a Kirchhoff-type nonlinear static beam. J. Appl. Math. 2009, Art. ID 818269, 12 pp.
[3] H. Temimi, A. R. Ansari, A. M. Siddiqui, An approximate solution for the static beam problem and nonlinear integro-differential equations. Comput. Math. Appl. 62 (2011), no. 8, 3132-3139.

Numerical Calculations of the Timoshenko Type Dynamic Beam Nonlinear Integro-Differential Equation

Giorgi Papukashvili ${ }^{1,2}$, Meri Sharikadze ${ }^{3,4}$

${ }^{1}$ V. Komarovi no. 199 Public School, Tbilisi, Georgia
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia
email: gagapapukashvili@gmail.com
${ }^{3}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
${ }^{4}$ Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: meri.sharikadze@tsu.ge

Let us consider the nonlinear equation

$$
\begin{array}{r}
u_{t t}(x, t)+\delta u_{t}(x, t)+\gamma u_{x x x x t}(x, t)+\alpha u_{x x x x}(x, t)-\left(\beta+\rho \int_{0}^{L} u_{x}^{2}(x, t) d x\right) u_{x x}(x, t) \\
-\sigma\left(\int_{0}^{L} u_{x}(x, t) u_{x t}(x, t) d x\right) u_{x x}(x, t)=0, \quad 0<x<L, \quad 0<t \leq T, \tag{1}
\end{array}
$$

with the initial boundary conditions

$$
\begin{gather*}
u(x, 0)=u^{0}(x), \quad u_{t}(x, 0)=u^{1}(x) \\
u(0, t)=u(L, t)=0, \quad u_{x x}(0, t)=u_{x x}(L, t)=0 . \tag{2}
\end{gather*}
$$

Here $\alpha, \gamma, \rho, \sigma, \beta$ and δ are given constants, among which the first four are positive numbers, while $u^{0}(x) \in W_{2}^{2}(0, L)$ and $u^{1}(x) \in L_{2}(0, L)$ are given functions such
that $u^{0}(0)=u^{1}(0)=u^{0}(L)=u^{1}(L)=0$. We suppose that there exits a solution $u(x, t) \in W_{2}^{2}((0, L) \times(0, T))$ of problem (1), (2). The equation (1) obtained by J. Ball [1] using the Timoshenko theory describes the vibration of a beam. Solution of problem $(1),(2)$ is founded by means of an algorithm, the constituent parts of which are the Galerkin method, an implicit symmetric difference scheme and Jacobi iterative method (see [2]). For approximate solving boundary value problem (1), (2) the some of programs in algorithm language Maple is composed and many numerical experiments are carried out.

The author express hearing thanks to Prof. J. Peradze for his active help in problem statement and solving.

References

[1] J. M. Ball, Stability theory for an extensible beam. J. Differential Equations 14 (1973), 399-418.
[2] G. Papukashvili, J. Peradze, Z. Tsiklauri, On a stage of a numerical algorithm for a Timoshenko type nonlinear equation. Proc. A. Razmadze Math. Inst. 158 (2012), 67-77.

A Difference Scheme for a Nonlinear Integro-Differential Wave Equation

Jemal Peradze

I. Javakhishvili Tbilisi State University, Tbilisi, Georgia

Georgian Technical University, Tbilisi, Georgia
email: j_peradze@yahoo.com

We consider the initial boundary value problem

$$
\begin{gather*}
u_{t t}(x, t)+\delta u_{t}(x, t)+\gamma u_{x x x x t}(x, t)+\alpha u_{x x x x}(x, t)-\left(\beta+\rho \int_{0}^{L} u_{x}^{2}(x, t) d x\right) u_{x x}(x, t) \\
-\sigma\left(\int_{0}^{L} u_{x}(x, t) u_{x t}(x, t) d x\right) u_{x x}(x, t)=0, \quad 0<x<L, \quad 0<t \leq T \tag{1}\\
u(x, 0)=u^{0}(x), \quad u_{t}(x, 0)=u^{1}(x) \\
u(0, t)=u(L, t)=0, \quad u_{x x}(0, t)=u_{x x}(L, t)=0 \tag{2}
\end{gather*}
$$

where $\alpha, \gamma, \rho, \sigma, \beta$ and δ are the given constants, among which the first four are positive numbers, while $u^{0}(x)$ and $u^{1}(x)$ are given sufficiently smooth functions.

Equation (1) obtained by J. M. Ball [1] using the Timoshenko theory describes the vibration of the beam. To approximate the solution of problem (1), (2) with respect to a time variable a difference scheme is used and its error is estimated.

References

[1] J. M. Ball, Stability theory for an extensible beam. J. Differential Equations 14 (1973), 399-418.

Dirichlet Problem in the Weighted Spaces $L^{1}(\rho)$

Vahe Petrosyan
Institute of Mathematics, Yerevan, Armenia
email: vahee.petrosian@gmail.com

Let T be a unit circle in the complex plane z, and let D^{+}and D^{-}be the interior and exterior domains, respectively bounded by the curve T. Also, $\rho(t)=\prod_{k=1}^{m}\left|t-t_{k}\right|^{\alpha_{k}}$, where $t_{k} \in T$ and $\alpha_{k}, k=1, \ldots, m$, are arbitrary real numbers.

The Dirichlet boundary value problem is investigated in the following setting:
Problem D. Let f be a real-valued, measurable on T function from the class $L^{1}(\rho)$. Determine an analytic in D^{+}function $\Phi(z)$ to satisfy the boundary condition:

$$
\lim _{r \rightarrow 1-0}\|\operatorname{Re} \Phi(r t)-f(t)\|_{L^{1}\left(\rho_{r}\right)}=0 .
$$

With the famous transformation this problem is reduced to Riemann boundary value problem which is investigated in the work [1].

1. On the general solution of the homogeneous problem

(a) If $N>-1$, then the general solution of the homogeneous Problem D can be represented in the form:

$$
\Phi_{0}(z)=\frac{1}{\Pi(z)}\left(c_{0} z^{N}+c_{1} z^{N-1}+\cdots+c_{N}\right)
$$

where numbers $\left\{c_{l}\right\}_{l=0}^{N}$ satisfy the following condition:

$$
(-1)^{N+1} \overline{c_{l}} \prod_{k=1}^{m} t_{k}^{n_{k}}=c_{N-l}, \quad l=0,1, \ldots, N
$$

(b) If $N \leq-1$, then the homogeneous problem has only trivial solution.

2. On the general solution of Dirichlet problem

The general solution is given in the form $\Phi(z)=\Omega(f, z)+\Phi_{0}(z)$, where

$$
\Omega(f, z)=\frac{1}{\pi i \Pi(z)}\left(\int_{T} \frac{f(t)\left(t^{N}+z^{N}\right) \Pi(t)}{t^{N}(t-z)} d t-\int_{T} \frac{f(t) \Pi(t)}{t^{N+1}} d t\right)
$$

Besides, in the case $N \leq-1$ there are given necessary and sufficient conditions for solvability of the problem.

References

[1] H. M. Hayrapetyan, V. G. Petrosyan, Riemann problem in the weighted spaces $L^{1}()$. (Russian) Izv. Nats. Akad. Nauk Armen., Mat. 51 (2016), no. 5, 13-29; translation in J. Contemp. Math. Anal., Armen. Acad. Sci. 51 (2016), no. 5, 249-261.

j๙. gmbgols дobsдлґmo: gllc.ge@gmail.com

 39 mbools ${ }_{3} 99^{\text {dblb }}$

 ls

[2] K. Pkhakadze, M. Chikvinidze, G. Chichua, I. Beriasvili, D. Kurtskhalia, Sh. Malidze, the first version of the georgian smart journal and adapted Wikipedia. Proceedings of I. Vekua Institute of Applied Mathematics 66 (2016), 47-54.

 ठою.

 «зз

 ls

 @

On Gentzen-type Proof Systems for Minimal Quantum Logic

Sopo Pkhakadze, Hans Tompits

Institute for Information Systems 184/3, Technische Universität Wien
Vienna, Austria
email: pkhakadze.s@gmail.com; tompits@kr.tuwien.ac.at

Quantum logic originated in the 1930s with John von Neumann's book on the mathematical foundations of quantum mechanics [5] and is characterised by the algebraic structure of projection operators over Hilbert spaces, corresponding to orthomodular lattices. These are Boolean lattices without the distributive laws but in which modularity is stipulated, expressing the condition that, for a lattice $(L, \sqcup, \sqcap), z \sqsubseteq x$ implies $x \sqcap(y \sqcup z)=(x \sqcap y) \sqcup z$, for all $x, y, z \in L$ (recall that, for any $a, b \in L, a \sqsubseteq b$ holds iff $a \sqcap b=a)$. Minimal quantum logic, on the other hand, is a variant of quantum logic being characterised by ortholattices, which are orthomodular lattices without the modularity requirement. Accordingly, minimal quantum logic is also referred to as orthologic.

In this work, we study axiomatisations of orthologic in terms of Gentzen-type systems. This kind of proof systems are important for analysing proof search in automated deduction and have first been introduced by Gerhard Gentzen in 1935 [3]. We discuss relations of different calculi for orthologic introduced in the literature [4,1,2] and present generalisations to the predicate-logic case.

Acknowledgement. The first author was partially supported by the Shota Rustaveli National Science Foundation under grant GNSF/FR/508/4-120/14.

References

[1] U. Egly, H. Tompits, Gentzen-like methods in quantum logic. In Proceedings of the Eight International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX'99), Position Papers, pp. 227-260. Technical Report, Institute for Programming and Logics, University at Albany - SUNY, 1999.
[2] U. Egly, H. Tompits, On different proof-search strategies for orthologic. Constructivism in non-classical logics and computer science (Mantova, 2000). Studia Logica 73 (2003), no. 1, 131-152.
[3] Gentzen, Gerhard. Untersuchungen über das logische Schließen. (German) I. Math. Z. 39 (1935), no. 1, 176-210; II. Math. Z. 39 (1935), no. 1, 405-431.
[4] H. Nishimura, Gentzen methods in quantum logic. Handbook of quantum logic and quantum structures - quantum logic, 227-260, Elsevier/North-Holland, Amsterdam, 2009.
[5] J. von Neumann, Mathematische Grundlagen der Quantenmechanik. SpringerVerlag, 1932.

About Methods of Stochastic Integral Representation of Wiener Functionals

Omar Purtukhia

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
Department of Mathematics, Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: o.purtukhia@gmail.com

In stochastic process theory, the representation of functionals of Wiener process by stochastic integrals, also known as martingale representation theorem, states that a functional that is measurable with respect to the filtration generated by the Wiener process can be written in terms of Ito's stochastic integral with respect to this process. The theorem only asserts the existence of the representation and does not help to find it explicitly. It is possible in many cases to determine the form of the representation using Malliavin calculus if a functional is Malliavin differentiable. We consider nonsmooth (in Malliavin sense) functionals and have developed some methods of obtaining of constructive martingale representation theorems. The first proof of the martingale representation theorem
was implicitly provided by Ito (1951) himself. Many years later, Dellacherie (1974) gave a simple new proof of Ito's theorem using Hilbert space techniques. Many other articles were written afterward on this problem and its applications but one of the pioneer work on explicit descriptions of the integrand is certainly the one by Clark (1970). Those of Haussmann (1979), Ocone (1984), Ocone and Karatzas (1991) and Karatzas, Ocone and Li (1991) were also particularly significant. A nice survey article on the problem of martingale representation was written by Davis (2005).

In spite of the fact that this problem is closely related to important issues in applications, for example finding hedging portfolios in finance, much of the work on the subject did not seem to consider explicitness of the representation as the ultimate goal. In many papers using Malliavin calculus or some kind of differential calculus for stochastic processes, the results are quite general but unsatisfactory from the explicitness point of view: the integrands in the stochastic integral representations always involve predictable projections or conditional expectations and some kind of gradients. Shiryaev and Yor (2003) proposed a method based on Ito's formula to find explicit martingale representation for the running maximum of Wiener process. Even though they consider Clark-Ocone formula as a general way to find stochastic integral representations, they raise the question if it is possible to handle it efficiently even in simple cases.

In all cases described above investigated functionals, were stochastically (in Malliavin sense) smooth. It has turned out that the requirement of smoothness of functional can be weakened by the requirement of smoothness only of its conditional mathematical expectation. We (with Prof. O. Glonti, 2014) considered Wiener functionals which are not stochastically differentiable. In particular, we generalized the Clark-Ocone formula in case, when functional is not stochastically smooth, but its conditional mathematical expectation is stochastically differentiable and established the method of finding of integrand. Now, we have considered functionals which didn't satisfy even these weakened conditions. To such functionals belong, for example, Lebesgue integral (with respect to time variable) from stochastically non smooth square integrable processes.

Variational-Difference Scheme for Kirchhoff Two-Dimensional Nonlinear Dynamical Equation

Jemal Rogava ${ }^{1,2}$, Archil Papukashvili ${ }^{1}$, Zurab Vashakidze ${ }^{1}$
${ }^{1}$ Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Department of Mathematics, I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: jemal.rogava@tsu.ge; archil.papukashvili@tsu.ge; zurab.vashakidze306@ens.tsu.edu.ge

In the present work, we consider the classical nonlinear Kirchhoff string equation and study its two-dimensional generalization. Our goal is to find an approximate solution to the initial-boundary value problem for this equation. To do so, we apply a three-layer symmetrical semi-discrete scheme with respect to time variable, in which the gradient value of a nonlinear term is taken at the middle point. This detail is essential, because the inversion of the linear operator is sufficient for computation of approximate solutions for each time step. The variation method is applied for spatial variables. Sine function and differences of the Legendre polynomials were used as coordinate functions. This choice of Legendre polynomials is also important for numerical realization. This way we obtain a system whose structure does not essentially differ from the corresponding difference equations system, allowing us to use the methods developed for solving difference equations system.

Linear variation problem for one-dimensional Kirchhoff equation (for spatial dimension) is considered, error of approximate solution is estimated, and convergence order considering the number of spatial functions is found. General operator equation is considered for symmetric operators. We prove that the matrix corresponding to its variation system is positively defined, when coordinate functions satisfy some natural conditions that will be specified in this work.

Numerical realization program with corresponding interface was created based on the offered algorithm, and numerical computations were carried out for model problems both for one-dimensional and two-dimensional cases. Based on the obtained theoretical results and numerical computations, the practical conclusions about the stability and convergence of the offered method were drawn.

The Invariance Property of Some Type of Derived Unranked Operators

Khimuri Rukhaia ${ }^{1,2}$, Lali Tibua ${ }^{1}$, Sopo Pkhakadze ${ }^{1}$
${ }^{1}$ I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Sokhumi State University, Tbilisi, Georgia
email: Khimuri.rukhaia@gmail.com; lali.tibua@gmail.com

We use theory extended with contracted operators to study Bourbaki fundamental theory. We have defined unranked invariance and monotonicity notions and proved corresponding theorems. In particular, we have proved following theorem: Assume type of derivable unranked operators is I, II, II 1. If any operators belonging before derivable operators are invariant, then operator is also invariant.

Result 1. Unranked operators and are invariant operators.
Result 2. Unranked operators and are monotonic operators.
Result 3. Unranked operators and are monotonic with respect to last operand.
Acknowledgment. This work was supported by the Shota Rustaveli National Science Foundation under the grants \# FR/508/4-120/14.

References

[1] B. Dundua, M. Rukhaia, Kh. Rukhaia, L. Tibua, P_{ρ} Log for access control. J. Technical Sci. Technol. 5 (2015), no. 2, 41-44.
[2] Sh. S. Phakadze, Some questions of notation theory. (Russian) Izdat. Tbilis. Univ., Tbilisi, 1977.

Non-Classical Problems of Statics of Linear Thermoelasticity of Microstretch Materials with Microtemperatures

Guram Sadunishvili, Giorgi Karseladze, David Metreveli
Department of Mathematics, Georgian Technical University Tbilisi, Georgia

email: gsaduni@mail.ru; gkarseladze@gmail.com; datometreli@hotmail.com

The paper investigates non-classical boundary value problems of the theory of linear thermoelasticity of microstretch materials with microtemperatures. The representation formulas given in the paper for a general solution of a homogeneous system of differential equations are expressed in terms of four harmonic and four metaharmonic functions. These formulas are very helpful in solving a lot of particular problems for domains of concrete geometry. An applications of such a formula to a $I I I$ and $I V$ type boundary value problems for the ball is demonstrated. Uniqueness theorems are probed. Explicit solutions are constructed in the form of absolutely and uniformly convergent series.

Convective Clouds Prediction Based on ARL Aerological Diagrams and Radar Observations Data Analysis

Inga Samkharadze ${ }^{1}$, Teimuraz Davitashvili ${ }^{1,2}$
${ }^{1}$ Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University Tbilisi, Georgia
${ }^{2}$ I. Vekua Institute of Applied mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia

email: inga.samkharadze562@ens.tsu.edu.ge; teimuraz.davitashvili@tsu.ge

Dangerous meteorological events have significantly increased on the territory of Georgia over the last decades. In accordance with Georgia's complex Orography, the main part of these events has local character and they mainly are associated with the air mass convective movements. Therefore, in the agenda there is an urgent question about timely prediction of possible convection processes in the non-uniform areas of Georgia. For this, it is necessary to study the thermodynamic condition of the atmosphere in the particular areas and therefore determine the degree of instability of the atmosphere. The presented
article examines several cases of strong convective meteorological processes processing on the territory of Georgia based as on per the data of the synoptic maps, as well as on the basis of the Sighnaghi meteorological radar data. Aerological diagrams have been built for the each dangerous meteorological event taken part in the region. The diagrams were designed to measure and assess the thermodynamic state of the atmosphere and the rate of uncertainty of the atmosphere based on the particle method. It has been confirmed that the degree of volatility of the atmosphere for the four days was accurate in conjunction with data received from meteorological radar and synoptic mapping. This fact allows us to predict the atmospheric thermodynamic condition in the specific region on the basis of forecasted aerogical data obtained through the model and evaluate the quality of the convective processes in the local area.

A Note on the Rihaczek Transform and its Friends

Ayse Sandikci
Department of Mathematics, Ondokuzmayis University, Samsun, Turkey
email: ayses@omu.edu.tr

The Rihaczek quadratic representation is defined as the product of the signal $\{f(x)$ with its Fourier transform $\widehat{f}(\omega)$. Symmetrically, we obtain the conjugate Rihaczek representation. These representations give rise to play a key role within the theory of time frequency representations. In this work we study the regularity properties of Rihaczek transform and its friends on some function spaces (such as Lorenz spaces, a kind of modulation spaces).

Some key references are given below.

References

[1] P. Boggiatto, G. De Donno, A. Oliaro, A class of quadratic time-frequency representations based on the short-time Fourier transform. Modern trends in pseudodifferential operators, 235-249, Oper. Theory Adv. Appl., 172, Birkhäuser, Basel, 2007.
[2] P. Boggiatto, G. De Donno, A. Oliaro, Time-frequency representations of Wigner type and pseudo-differential operators. Trans. Amer. Math. Soc. 362 (2010), no. 9, 4955-4981.
[3] K. Gröchenig, Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA, 2001.
[4] R. O'Neil, Integral transforms and tensor products on Orlicz spaces and $L(p, q)$ spaces. J. Analyse Math. 21 (1968), 1-276.
[5] A. Sandıkçı, On Lorentz mixed normed modulation spaces. J. Pseudo-Differ. Oper. Appl. 3 (2012), no. 3, 263-281.

Parallel Alogirthm For Kirchhoff's One Non-Linear Problem

Tamaz Sepiashvili ${ }^{1}$, Vladimer Odisharia ${ }^{1}$, Paata Tsereteli ${ }^{2}$, Kakhaber Odisharia ${ }^{2}$

${ }^{1}$ Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University
Tbilisi, Georgia
${ }^{2}$ Informatics, Mathematics and Natural Sciences School, St. Andrew the First-Called Georgian University, Tbilisi, Georgia email: vodisharia@yahoo.com

Let us consider the initial boundary value problem:

$$
\begin{gather*}
\omega_{t t}-\left(\lambda+\frac{2}{\pi} \int_{0}^{\pi} \omega_{x}^{2} d x\right) \omega_{x x}=f(x, t), \quad 0<x<\pi, \quad 0<t \leq T, \quad \lambda=\text { const }>0 \tag{1}\\
\omega(x, 0)=\omega^{(0)}(x), \quad \omega_{t}(x, 0)=\omega^{(1)}(x), \quad \omega(0, t)=\omega(\pi, t)=0 \tag{2}
\end{gather*}
$$

For the homogeneous case the equation (1) was obtained by Kirchhoff [1] who investigated the dynamic state of a string. A great number of works are devoted to this equation both from the standpoint of its solvability and from the standpoint of construction and investigation of numerical algorithms (see, for example, [2]-[5] and the references cited therein).

We represent the parallel algorithm of task (1), (2) that approximates the exact solution and results obtained by parallel computer. Convergence of approximate solution to the exact solution is also proved. This approach was used before for Timoshenko equations [6].

References

[1] G. Kirchhoff, Vorlesungen über Mechanik. Teubner, Leipzig, 1999.
[2] L. A. Medeiros, J. Limaco, S. B. Menezes, Vibrations of elastic strings: mathematical aspects. II. J. Comput. Anal. Appl. 4 (2002), no. 3, 211-263.
[3] J. Peradze, A numerical algorithm for the nonlinear Kirchhoff string equation. Nu mer. Math. 102 (2005), no. 2, 311-342.
[4] J. Peradze, An approximate algorithm for a Kirchhoff wave equation. SIAM J. Numer. Anal. 47 (2009), no. 3, 2243-2268.
[5] K. Odisharia, V. Odisharia, J. Peradze, On the accuracy of an iteration method for one nonlinear oscillation equation. PAMM, Proc. Appl. Math. Mech. 10 (2010), no. 1, 49--50
[6] K. Odisharia, P. Tsereteli, V. Odisharia, Parallel algorithm for Timoshenko nonlinear problem. VI Annual International Conference of the Georgian Mathematical Union, Book of Abstract, pp. 158-159, Batumi, Georgia, 2015.

Stochastic Variational Inequalities and Optimal Stopping

Malkhaz Shashiashvili
Department of Mathematics, Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: malkhaz.shashiashvili@tsu.ge

We give a new characterization of the Snell envelope of a given process as the unique solution of certain stochastic variational inequality (SVI). This approach leads to several a priori estimates for the Snell envelopes and their components [1].

The valuation for American Contingent Claims (ACC) in general financial market model is considered as an application. The robustness of the optimal portfolio/consumption processes with respect to the payoff function is established [1], [2].

References

[1] A. Danelia, B. Dochviri, M. Shashiashvili, Stochastic variational inequalities and optimal stopping: applications to the robustness of the portfolio/consumption processes. Stoch. Stoch. Rep. 75 (2003), no. 6, 407-423.
[2] N. Rehman, M. Shashiashvili, The American foreign exchange option in timedependent one-dimensional diffusion model for exchange rate. Appl. Math. Optim. 59 (2009), no. 3, 329-363.

On the Spaces of Generalized Theta-Series with Quadratic Forms of Five Variables

Ketevan Shavgulidze

Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University Tbilisi, Georgia

email: ketevan.shavgulidze@tsu.ge

We form the basis of the space of spherical polynomials of second order $P(2, Q)$ with respect to some diagonal quadratic form $Q(X)$ of five variables and obtained the basis of the space of generalized theta-series $T(2, Q)$ with spherical polynomial P of second order and quadratic form $Q(X)$.

Let

$$
Q(X)=b_{11} x_{1}^{2}+b_{22} x_{2}^{2}+b_{33} x_{3}^{2}+b_{44} x_{4}^{2}+b_{55} x_{5}^{2}
$$

be a quadratic form of five variables. For these form we have proved the following
Theorem. $\operatorname{dim} T(2, Q)=4$ and the generalized theta-series:

$$
\begin{aligned}
& \vartheta\left(\tau, P_{5}, Q\right)=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n}\left(-\frac{b_{11}}{b_{22}} x_{1}^{2}+x_{2}^{2}\right)\right) z^{n} \\
& \vartheta\left(\tau, P_{9}, Q\right)=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n}\left(-\frac{b_{11}}{b_{33}} x_{1}^{2}+x_{3}^{2}\right)\right) z^{n} \\
& \vartheta\left(\tau, P_{12}, Q\right)=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n}\left(-\frac{b_{11}}{b_{44}} x_{1}^{2}+x_{4}^{2}\right)\right) z^{n} \\
& \vartheta\left(\tau, P_{14}, Q\right)=\sum_{n=1}^{\infty}\left(\sum_{Q(x)=n}\left(-\frac{b_{11}}{b_{55}} x_{1}^{2}+x_{5}^{2}\right)\right) z^{n}
\end{aligned}
$$

form the basis of the space $T(2, Q)$.

References

[1] K. Shavgulidze, On the dimensions of some spaces of generalized theta-series. Lith. Math. J. 53 (2013), no. 2, 235-240.
[2] K. Shavgulidze, On the dimension of spaces of generalized quaternary theta-series. Proc. I. Vekua Inst. Appl. Math. 59/60 (2009/10), 60-75.0), 60-75.
[3] K. Shavgulidze, On the space of spherical polynomial with quadratic forms of five variables. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 29 (2015), 119-122.

Computer Modeling of Multi-Party Elections

Leila Sulava
Sokhumi State University, Tbilisi, Georgia
email: leilasamadash@gmail.com

From the point of view of developing the models of elections that we proposed earlier, now consider the general nonlinear mathematical model for four party elections with variable coefficients [1], [2]. This model describes quantity dynamics of voters of ruling and three opposition parties between two elections.

There are following objects in the nonlinear mathematical model that describes this process:

1. State and administrative structures, that try to influence supporters of opposition party and gain their support through utilization of state resources (the administrative structures are obviously supporters of the ruling party).
2. The voters who support a ruling party.
3. The voters who support the first opposition party.
4. The voters who support the second opposition party.
5. The voters who support the third opposition party.

Nonlinear mathematical model is described by taking into consideration voters' activity, demographic factor and possible falsification of the elections.

For numerical solution the software MATLAB is used. Numerical experiments are carried out and results are visualized.

The model of elections are quite relevant from the theoretical as well as practical point of view. The interested parties are encouraged to use widely the given results, calculate parameters and choose the future strategy for achieving the desired goal.

References

[1] T. I. Chilachava, A nonlinear mathematical model of the dynamics of the voters progovernment and opposition parties (the two election subjects). Basic Paradigms in Science and Technology. Development for the XXI Century. Transactions II, 2012, 184-188.
[2] T. I. Chilachava, L. O. Sulava, Mathematical and computer modeling of threeparty elections. Georgian Electronic Scientific Journal: Computer Science and Telecommunications, 2016, no. 2(48), 59-72.

The Generalized Maxwell's Body when the Constitutive Relationship Contains Conformable Fractional Derivatives

Teimuraz Surguladze

Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
email: teimurazsurguladze@yahoo.com

The generalized Maxwell's body is considered when the constitutive relationship contains conformable fractional derivatives [1]. Direct and return ratios are received. Functions of a relaxation and creep are calculated.

References

[1] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative. J. Comput. Appl. Math. 264 (2014), 65-70.

Solution of the First and Second Boundary Value Problems of Statics of the Theory of Elastic Mixture for a Half and a Fourtly Planes

Kosta Svanadze
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
email: kostasvanadze@yahoo.com

For homogeneous equation of statics of the linear theory of elastic mixture in the case of a half and a first planes effective are solved the first (when on the boundary domain is given a displacement vector) and the second(when on the boundary domain is given a stress vector) boundary value problems.

By applying analogous formulas due to Kolosov-Muskhelishvii and the method described in [1] the solutions of the problems in a half-plane - are given in quadratures. Further the solution of the first problem is represented by Poisson type formula.

To solve the problems in a fourtly plane we use the method developed in [2] and the solutions of the problems are given in quadratures.

References

[1] M. Basheleishvili, K. Svanadze, A new method of solving the basic plane boundary value problems of statics of the elastic mixture theory. Georgian Math. J. 8 (2001), no. 3, 427-446.
[2] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Threedimensional problems of the mathematical theory of elasticity and thermoelasticity. (Russian) Izdat. "Nauka", Moscow, 1976.

Potential Method in the Theory of Thermoviscoelasticity of Binary Mixtures

Maia M. Svanadze
Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: maia.svanadze@gmail.com

The present talk concerns with the linear theory of thermoviscoelasticity of binary mixture which is modelled as a mixture of an isotropic elastic solid and a Kelvin-Voigt material. The basic boundary value problems (BVPs) of quasi statics of the considered theory are investigated and some basic results of the classical theory of thermoviscoelasticity are generalized. The fundamental solution of the system of equations of quasi-statics is constructed by elementary functions. The representation of Galerkin type solution is obtained. The Green's formulae and the formulae of integral representation of regular vector and regular (classical) solutions are obtained. The uniqueness theorems for solutions of the internal and external basic BVPs are proved. The basic properties of potentials and singular integral operators are presented. Finally, the existence theorems for the above mentioned BVPs are proved by means of the potential method and the theory of singular integral equations.

Acknowledgment. This research has been fulfilled by financial support of Shota Rustaveli National Science Foundation (Grant no. YS15_2.1.1_100).

On the Solution of the Neumann BVP of Thermo-Electro-Magneto Elasticity for Half Space

Zurab Tediashvili
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia email: zuratedo@gmail.com

Let \mathbb{R}^{3} be divided by some plane into two half-spaces. Assume that these half-spaces are $\mathbb{R}_{1}^{3}:=\left\{x \mid x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, x_{3}>0\right\}, \mathbb{R}_{2}^{3}:=\left\{x \mid x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, x_{3}<0\right\}$.

We investigate the following Neumann boundary value problem of the thermo-electro-magneto-elasticity theory for a half-space.
Neumann problem. Find a solution vector $U=(u, \varphi, \psi, \vartheta)^{\top} \in\left[C^{1}\left(\overline{\mathbb{R}_{1,2}^{3}}\right)\right]^{6} \cap\left[C^{2}\left(\mathbb{R}_{1,2}^{3}\right)\right]^{6}$ to the system of equations

$$
\begin{equation*}
A(\partial) U=0 \text { in } \mathbb{R}_{1,2}^{3} \tag{1}
\end{equation*}
$$

satisfying the Neumann type boundary condition

$$
\begin{equation*}
\{\mathcal{T}(\partial, n) U\}^{ \pm}=F \text { on } S=\partial \mathbb{R}_{1,2}^{3} \tag{2}
\end{equation*}
$$

where $A(\partial)=\left[A_{p q}(\partial)\right]_{6 \times 6}$ is the matrix differential operator of statics in the theory of thermo-electro-magneto-elasticity and $\mathcal{T}(\partial, n)$ is the corresponding generalised stress operator [1]. We require that $F \in \stackrel{\circ}{C}^{\infty}\left(\mathbb{R}^{2}\right)$.
Theorem 1. The Neumann boundary value problems (1), (2) have at most one solution $U=(u, \varphi, \psi, \theta)^{\top}$ in the space $\left[C^{1}\left(\overline{\mathbb{R}_{1,2}^{3}}\right)\right]^{6} \cap\left[C^{2}\left(\mathbb{R}_{1,2}^{3}\right)\right]^{6}$ provided

$$
\theta(x)=\mathcal{O}\left(|x|^{-1}\right) \quad \text { and } \quad \partial^{\alpha} \widetilde{U}(x)=\mathcal{O}\left(|x|^{-1-|\alpha|} \ln |x|\right) \text { as }|x| \rightarrow \infty
$$

for arbitrary multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Here $\widetilde{U}=(u, \varphi, \psi)^{\top}$.
Theorem 2. Let $F \in \stackrel{\circ}{C}\left(\mathbb{R}^{2}\right)$ and $\int_{\mathbb{R}^{2}} F(\widetilde{x}) \widetilde{x}^{\beta} d \widetilde{x}=0$ for arbitrary multi-index $\beta=$ $\left(\beta_{1}, \beta_{2}\right),|\beta|=0,1,2$. Then the unique solutions of the boundary value problems (1), (2) can be represented in the form

$$
\begin{aligned}
& U(x)=\mathcal{F}_{\widetilde{\xi} \rightarrow \widetilde{x}}^{-1}\left[\mathcal{T}(-i \xi, n) \Phi^{(-)}\left(\widetilde{\xi}, x_{3}\right)\left[\Phi^{(-)}(\widetilde{\xi}, 0)\right]^{-1} \widehat{f}(\widetilde{\xi})\right], \quad x_{3}>0, \quad \text { or } \\
& U(x)=\mathcal{F}_{\widetilde{\xi} \rightarrow \widetilde{x}}^{-1}\left[\mathcal{T}(-i \xi, n) \Phi^{(+)}\left(\widetilde{\xi}, x_{3}\right)\left[\Phi^{(+)}(\widetilde{\xi}, 0)\right]^{-1} \widehat{f}(\widetilde{\xi})\right], \quad x_{3}<0 .
\end{aligned}
$$

Here \mathcal{F}^{-1} denotes the inverse generalized Fourier transform and $\Phi^{(\pm)}$are matrices constructed by the symbol matrix of the operator $A(\partial)[2]$.

References

[1] D. Natroshvili, Mathematical problems of thermo-electro-magneto-elasticity. Lect. Notes TICMI 12 (2011), 127 pp.
[2] Z. Tediashvili, The Dirichlet boundary value problem of thermo-electro-magneto elasticity for half space. Mem. Differential Equations Math. Phys. 69 (2016), 93-103.

On Coverings and Decompositions of Subsets of Euclidean Space

Tengiz Tetunashvili

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
email: tengiztetunashvili@gmail.com

In this presentation we consider various coverings of the Euclidean plane and Euclidean space which are produced by using a set-theoretical approach. Special attention is paid to so-called homogenous coverings which are constructed with the aid of Axiom of Choice and method of transfinite induction. In this context, it should be noted that in 1985 A. B. Kharazishvili solved a well-known problem concerning homogenous coverings of the Euclidean plane and three-dimensional Euclidean space with congruent circumferences (see [1]). We apply the method similar to that of [1]. In our joint paper (see [2]), some questions related to indicated problems are highlighted too. We also consider several decompositions of certain subsets of Euclidean space and demonstrate their close connections with independent families of sets. Some applications of special decompositions in mathematical analysis are also discussed.

Acknowledgement. This work is partially supported by the Shota Rustaveli National Science Foundation Grant for Young Scientists (Contract Number: YS15_2.1.1_31).

References

[1] A. B. Kharazishvili, Partition of a three-dimensional space into congruent circles. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 119 (1985), no. 1, 57-60.
[2] A. B. Kharazishvili, T. Sh. Tetunashvili, On some coverings of the Euclidean plane with pairwise congruent circles. Amer. Math. Monthly 117 (2010), no. 5, 414-423.

Features of the Analytic Functions' Border Meanings in the Unit Disk

Giorgi Tetvadze, Lamara Tsibadze, Lili Tetvadze
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
email: giorgi.tetvadze@yahoo.com

Generally, there is no connection between the angular border meanings of the analytic functions' sequences and the angular meanings of the sequences' border functions. Even if the members of the sequence are multinomials. However, there are necessary and sufficient conditions, such that, on the positively measured subsequence of the unit circle there is a sequence, which is uniformly convergent to the analytic function inside unit circle and is convergent to the given function almost everywhere on the borders of the circle. Besides, the angular border meanings of the border functions are almost equal to the meanings of the function.

References

[1] I. I. Privalov, Boundary properties of analytic functions. (Russian) 2d ed. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950.
[2] G. Tetvadze, L. Tsibadze, Convergence of the Border meanings of the unit disk. Bull. Akaki Tsereteli State Univ. no. 1(9), 2017.

About Backward Stochastic Integral

Luka Tikanadze
Department of Mathematics, Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: tikanadzeluka@gmail.com

We study the so called backward stochastic integral which in one specific case has been entered by McKean (1969), but we consider a case when the integrand in addition depends on random and time variables and some properties of this stochastic integral construction are studied. As it is known, in ordinary integration theory the requirement of measurability of integrand is essentially less restriction, than the condition of its integrability, which demands a certain bound condition of absolute value of the integrand.

As for the Ito's Stochastic Integral $\int_{0}^{T} f(t, \omega) d W_{t}(\omega)$, here, the situation is opposite in some sense: moreover that, integrand $f(t, \omega)$ is a measurable function of two variables, it should be an adapted process, i.e. for all $t \in[0, T]$ the random variable $f(t, \cdot)$ must be measurable with respect to the σ-algebra $\Im_{t}^{W}:=\sigma\left\{W_{s}: s \in[0, t]\right\}$, which means that integrand should be independent of the future increments of the Wiener process. On the one hand, it is clear that in many cases this is natural condition, where the filtration \Im_{t}^{W} represents the evolution of the available information. On the other hand, this condition for a long time was limiting, both development of the theory, as well as applications of stochastic calculus.

In the 70th of the last century, there have been a lot of tries to weaken the adaptedness requirement for the integrand of Ito's stochastic integral, as well as in the theory of filtration expansion. A completely different approach has been suggested by Skorokhod (1975), which didn't demand independence of the integrand from the future increments of the Wiener integrator and was symmetrical with respect to time reversal. For this purpose it was required to demand smoothness of an integrand in some sense, in particular its stochastically differentiability.

We define and study some properties of the backward stochastic integral where the integrand (in difference from the case considered in [1]) depends on random and time variables. In particular, the class of integrable in such sense integrands is described, the relationships with both of Ito's and Stratanovich's integrals are established and the change of variables rule (the analogous of Ito's formula) is given. As it is known, if for every period of time f is dependent of Wiener process past behavior (or in other words, it is adapted process to its own natural filtration), then the integral $\int_{0}^{T} f d W$ had been defined by Ito and it has some good properties, but if f is dependent of Wiener's process future behavior, then many properties (e.g., isometry and martingale property) are lost.

References

[1] H. P. McKean, Jr., Stochastic integrals. Probability and Mathematical Statistics, No. 5 Academic Press, New York-London, 1969.

About the Fast Direct Solution of DGTD Equation

Paata Tsereteli, Iskander Badzagua, Roman Jobava
EM Consultations and Software, EMCoS Ltd., Tbilisi, Georgia
email: paata.tsereteli@gmail.com

In recent years the discontinuous Galerkin time domain method (DGTD) [1] is widely used for applications arising in electromagnetics. In principle, DGTD is a variant of conventional finite element method (FEM) [2]. The main difference is that in DGTD the basis functions are only defined on a single element without any overlap with the neighboring elements. This effectively decouples the elements. After having performed all expensive operations on each element separately, the coupling between the elements is reintroduced via the so-called numerical flux. Usage of the spatial discretization based on unstructured, tetrahedral finite elements is one of the main advantages of DGTD. The explicit time integration schemes, such as Runge-Kutta and Leap-Frog are easy applicable, but unfortunately computationally expensive due to restriction of time step size (Courant-Friedrichs-Lewy condition). Thus it is required to use implicit time stepping scheme that is unconditionally stable and allows usage of larger time step, which in turn reduces the calculation time. However, efficiency of this approach depends on inversion of huge sparse matrices. This report presents an optimized implicit time integration scheme for DGTD based on fast direct inversion of matrix.

$$
A u^{n+1}=B u^{n}+C v^{i n c},
$$

where A, B and C are sparse matrices, u^{n} is vector of fields calculated at previous time step, $v^{i n c}$ is vector of incident fields and u^{n+1} is unknown vector that should be calculated.

For solution of the equation the same approach is used as in Fast Direct Solver (FDS), which was reported on the last conference [3]. Along with full and compressed blocks we introduce zero blocks, and newly obtained during solution non-zero blocks we compress by SVD method

References

[1] I. Badzagua, D. Eremian, B. Khvitia, Z. Kuchadze, G. Chiqovani, Z. Sukhiashvili, A. Gheonjian, R. Jobava, Calculation of electromagnetic emission using discontinuous Galerkin time domain method. IEEE Symp. Electromag. Compatibility, Dresden, pp. 1441-1445, Aug. 2015.
[2] P. Silvester, Finite element solution of homogeneous waveguide problems. Alta Freq. 38 (1969), 313-317.
[3] P. Tsereteli, Z. Sukhiashvili, R. Jobava, Application of low rank approximation for solution of large scale electromagnetic problems. VII International Joint Conference of Georgian Mathematical Union \mathcal{E} Georgian Mechanical Union (Batumi, Georgia, September 5-9, 2016), Book of Abstracts, 237-238.

MHD-Flow of Conducting Liquid in Ducts with Arbitrary Conductivity of Walls

Varden Tsutskiridze ${ }^{1}$, Levan Jikidze ${ }^{2}$, Eka Elerdashvili ${ }^{1}$
${ }^{1}$ Department of Mathematics, Georgian Technical University, Tbilisi, Georgia email: b.tsutskiridze@mail.ru; levanjikidze@yahoo.com; ek. Elerdashvili@yahoo.com
${ }^{2}$ Department of Engineering Mechanics and Technical Expertise in Construction, Georgian Technical University, Tbilisi, Georgia
email: levanjikidze@yahoo.com

The paper deals with steady flow of conducting liquid in rectangular ducts with arbitrary conductivity of walls in the presence of transverse magnetic field the variational method of investigation being used. The obtained results are applied particularly for the determination of viscous and Joule losses in the MHD-converter.

References

[1] L. G. Loitsansky, Mechanic of a fluid and gas. (Russian) Sciences, Moscow, 1987.
[2] V. Tsutskiridze, L. Jikidze, The conducting liquid flow between porous walls with heat transfer. Proc. A. Razmadze Math. Inst. 167 (2015), 73-89.
[3] K. V. Deshikachar, R. A. Ramachandra, Magnrtohydrodynamic unsteady flow in a tube of variable cross section in an axial magnetic field. Phys. Fluids. 30 (1987), no. 1, 278-279.
[4] J. V. Sharikadze, V. Tsutskiridze, L. Jikidze, The unsteady flow of incompressible fluid in a constant cross section pipes in an external uniform magnetic field. Internat. Sci. J. IFTOMM "Problem of Mechanics" 50 (2013), no. 1, 77-83.
[5] L. A. Jikidze, V. N. Tsutskiridze, Approximate method for solving an unsteady rotation problem for a porous plate in the conducting fluid with regard for the heat transfer in the case of electroconductivity. Several Problems Appl. Math. Mech. Series: Sci. Technol. Math. Phys. (ebook), New York, 2013, 157-164.
[6] J. I. Ramos, N. S. Winowich, Magnetohydrodynamic channel flow study. Phys. Fluids 29 (1986), no. 4, 992-997.
[7] V. Tsutskiridze, Hartmann problem for circular pipe. The International scientific Conference on "Mechanics - 2016". Proceedings of Mechanics - 2016, Tbilisi, 2016, pp. 89-92; ISBN 978-9941-9420-4-4.
[8] V. Tsutskiridze, L. Jikidze, The nonstationary flow of a conducting fluid in a plane pipe in the presence of a transverse magnetic field. Trans. A. Razmadze Math. Inst. 170 (2016), no. 2, 280-286.

On the Infinite Sequence of Twin Prime Numbers

Tristan Turashvili
Georgian Technical University, Tbilisi, Georgia
email: l.turashvili1999@gmail.com

Consider twin prime numbers 17 and 19. We construct two infinite sequence of numbers

107, 1007, 10007, 100007 and so on;
109, 1009, 10009, 100009 and so on.
By using mathematical induction is proved that all members of the first sequence are prime. Members $a_{4}, a_{10}, a_{16}, a_{22}$ and so on of the second sequence are composite and other members are prime. From these follows that there exists the infinite sequence of twin prime numbers.

I-Rad- \oplus-Supplemented Modules

Burcu Nişanci Türkmen, Ergül Türkmen
Department of Mathematics, Faculty of Art and Science, Amasya University Ipekköy/Amasya, Turkey

email: burcunisancie@hotmail.com; ergulturkmen@hotmail.com

Let M be an R-module and let I be an ideal of R. We say that M is I-Rad- \oplus supplemented modules, provided for every submodule N of M, there exists a direct summand K of M such that $M=N+K, N \cap K \subseteq I K$ and $N \cap K \subseteq \operatorname{Rad}(K)$. The aim of this paper is to show new properties of I-Rad- \oplus-supplemented modules. Especially, we show that any finite direct sum of I-Rad- \oplus-supplemented modules is I-Rad- \oplus-supplemented. We also prove that an R-module M is I-Rad- \oplus-supplemented if and only if K and $\frac{M}{K}$ are I-Rad- \oplus-supplemented for a fully invariant direct summand K of M. Finally, we obtain the following result: Let R be a Dedekind domain which is not a field and M be an injective R-module. Then M is Rad- \oplus-supplemented if and only if M is I-Rad- \oplus supplemented for every non-zero ideal I of R.

2010 Mathematics Subject Classification. 16D10, 16D50, 16D25.
Key words and phrases. supplement, $\operatorname{Rad}(-\oplus-)$ supplemented modules, I-Rad- $\oplus-$ supplemented modules.

References

[1] F. W. Anderson, K. R. Fuller, Rings and categories of modules. Graduate Texts in Mathematics, 13. Springer-Verlag, New York, 1992.
[2] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra. AddisonWesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969
[3] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules. Supplements and projectivity in module theory. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
[4] H. Çalışıcı, E. Türkmen, Generalized \oplus-supplemented modules. Algebra Discrete Math. 10 (2010), no. 2, 10-18 (2011).
[5] Ş. Ecevit, M. T. Koşan, R. Tribak, Rad- \oplus-supplemented modules and cofinitely Rad- \oplus-supplemented modules. Algebra Colloq. 19 (2012), no. 4, 637-648.
[6] A. I. Generalov, ω-cohigh purity in a category of modules. (Russian) Mat. Zametki 33 (1983), no. 5, 785-796; translation in Math. Notes 33 (1983), 402-408.
[7] A. Harmancı, D. Keskin, P. F. Smith, On \oplus-supplemented modules. Acta Math. Hungar. 83 (1999), no. 1-2, 161-169.
[8] J. Hausen, Supplemented modules over Dedekind domains. Pacific J. Math. 100 (1982), no. 2, 387-402.
[9] A. Idelhadj, R. Tribak, On some properties of \oplus-supplemented modules. Int. J. Math. Math. Sci. 2003, no. 69, 4373-4387.
[10] C. Lomp, On semilocal modules and rings. Comm. Algebra 27 (1999), no. 4, 1921-1935.
[11] S. H. Mohamed, B. J. Müller, Continuous and discrete modules. London Mathematical Society Lecture Note Series, 147. Cambridge University Press, Cambridge, 1990.
[12] A. Ç. Özcan, A. Harmanci, P. F. Smith, Duo modules. Glasg. Math. J. 48 (2006), no. 3, 533-545.
[13] R. Tribak, Y. Talebi, A. R. Moniri Hamzekolaee, S. Asgari, \oplus-supplemented modules relative to an ideal. Hacet. J. Math. Stat. 45 (2016), no. 1, 107-120.
[14] E. Türkmen, Rad- \oplus-supplemented modules. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 21 (2013), no. 1, 225-237.
[15] Y. Wang, A generalization of supplemented modules. arXiv:1108.3381v1[math.RA], 37(3) (2014), 703-717; https://arxiv.org/abs/1108. 3381.
[16] R. Wisbauer, Foundations of module and ring theory. Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
[17] H. Zöschinger, Komplementierte Moduln über Dedekindringen. (German) J. Algebra 29 (1974), 42-56.

Absolutely Convergence Factors for Lip 1 Class Fourier Coefficients

Giorgi Tutberidze, Vakhtang Tsagareishvili
Department of Mathematics, I. Javakhishvili Tbilisi State University
Tbilisi, Georgia
email: giorgi.tutberidze257@ens.tsu.edu.ge

It is known that if $\left(\varphi_{n}\right)$ is either trigonometric, Haar or Walsh systems and $f(x) \in$ Lip $\alpha, \alpha \in(0,1]$, then

$$
\sum_{n=1}^{\infty}\left|c_{n}(f)\right| n^{\gamma}<+\infty
$$

where $\gamma<\frac{\alpha}{2}$ and $c_{n}(f)=\int_{0}^{1} f(x) \varphi_{n}(x) d x$.
This talk is devoted to investigate sequences, for which multiplication with $\sum_{n=1}^{\infty}\left|c_{n}(f)\right| n^{\frac{1}{2}}$ provides absolute convergence of Lip 1 class Fourier coefficients.

We present theorem, which is a criterion for which above mentioned numerical sequences are absolute convergence factors of $\operatorname{Lip} 1$ class Fourier coefficients.

Hardy Operators in Grand Lebesgue Spaces

Salaudin Umarkhadzhiev
Academy of Sciences of Chechen Republic, Grozny, Russia
email: umsalaudin@gmail.com

Grand Lebesgue spaces over sets of infinite measure are defined with using an additional characteristic $a(\cdot)$ called a grandizer. Conditions on the grandizer $a(x)$ for the Hardy operators to be bounded in the grand Lebesgue spaces $L_{a}^{p}\left(\mathbb{R}^{n}\right)$ are found, and the lower and upper estimates for a sharp constant in the one-dimensional and multidimensional Hardy inequalities are given in dependence on the grandizer. For some special choice of the grandizer it is proved that this sharp constant is equal to the sharp constant for the classical Lebesgue spaces.

The Number of Representations of Some Positive Integers by Binary Forms

Teimuraz Vepkhvadze
Department of Mathematics, I. Javakhishvili Tbilis State University Tbilisi, Georgia
email: t-vepkhvadze@hotmail.com

It is well known how to obtain the formulas for the number of representations of a positive integer by a binary quadratic form which belongs to one-class genera. In this paper we give a full description of binary forms belonging to multi-class genera for which the problem of obtaining formulas for the number of representations of some positive integers can be easily reduced to the case of one-class genera.

On Cross-Sections in the (2,0)-Semitensor Bundle

Furkan Yildirim ${ }^{1}$, Ercan Celik ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science Atatürk University, Narman Vocational Training School, Erzurum, Turkey
email: furkan.yildirim@atauni.edu.tr
${ }^{2}$ Department of Mathematics, Faculty of Science Atatürk University Erzurum, Turkey
email: ercelik@atauni.edu.tr

Using projection (submersion) of the tangent bundle TM over a manifold M, we de ne a semi-tensor (pull-back) bundle tM of type (2,0). The main purpose of this paper is to investigate complete and horizontal lift of vector fields for semi-tensor (pull-back) bundle tM of type (2,0). In this context cross-sections in a special class of semi-tensor (pull-back) bundle tM of type $(2,0)$ can be also defined.

References

[1] C. J. Isham, Modern differential geometry for physicists. Second edition. World Scientific Lecture Notes in Physics, 61. World Scientific Publishing Co., Inc., River Edge, NJ, 1999.
[2] H. Fattaev, Tensor fi elds on cross-section in the tensor bundle of the type (2,0). News of Baku Univ., Physico-Mathematical Sciences Series, 2008, no. 4, 35-43.
[3] H. Fattaev, The Lifts of Vector Fields to the Semitensor Bundle of the Type (2, 0). Journal of Qafqaz University 25 (2009), no. 1, 136-140.
[4] A. Gezer, A. A. Salimov, Almost complex structures on the tensor bundles. Arab. J. Sci. Eng. Sect. A Sci. 33 (2008), no. 2, 283-296.
[5] D. Husemoller, Fibre Bundles. Third edition. Graduate Texts in Mathematics, 20. Springer-Verlag, New York, 1994.
[6] H. B. Lawson, M.-L. Michelsohn, Spin Geometry. Princeton Mathematical Series, 38. Princeton University Press, Princeton, NJ, 1989.
[7] A. J. Ledger, K. Yano, Almost complex structures on tensor bundles. J. Differential Geometry 1 (1967), 355-368.
[8] L. S. Pontryagin, Characteristic classes of differentiable manifolds. Transl. Amer. Math. Soc. 7 (1962), 279-331.
[9] A. Salimov, Tensor operators and their applications. Mathematics Research Developments Series. Nova Science Publishers, Inc., New York, 2013.
[10] A. A. Salimov, E. Kadıoğlu, Lifts of derivations to the semitangent bundle. Turkish J. Math. 24 (2000), no. 3, 259-266.
[11] N. Steenrod, The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton, N. J., 1951.
[12] K. Yano, S. Ishihara, Tangent and Cotangent Bundles: Differential Geometry. Pure and Applied Mathematics, No. 16. Marcel Dekker, Inc., New York, 1973.
[13] F. Yıldırım, On a special class of semi-cotangent bundle. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 41 (2015), no. 1, 25-38.
[14] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts. Turkish J. Math. 38 (2014), no. 2, 325-339.

An Application of Haar-Wavelet Collocation Method to a Beam Equation

${ }^{1}$ Mus Alparslan University, Mus, Turkey
email: kenanyildirim52@gmail.com
${ }^{2}$ Iskenderun Technical University, Hatay, Turkey
email: sertanalkan@iste.edu.tr

In this study, An Application of Haar-Wavelet Collocation Method to a Beam Equation is presented. In order to show the efficiency and robustness of the method, some numerical examples are given by means of figures.

Solitary Wave Solutions of a Special Class of Calogero-Degasperis-Fokas Equation

${ }^{1}$ Mus Alparslan University, Mus, Turkey
email: kenanyildirim52@gmail.com
${ }^{2}$ Young Researchers and Elite Club, Islamic Azad University, Ardabil, Iran email: shjamshidzadeh@yahoo.com; abazari.r@gmail.com

In this study, G^{\prime} / G expansion method is applied for a new solitary wave solutions of a special class of Calogero-Degasperis-Fokas equation. New periodic and solitary wave solutions for the nonlinear equation are derived.

On the Grammatical, Set Interpretations and Unification of Denotations of Logical Operations

David Zarnadze ${ }^{1,2}$, Soso Tsotniashvili ${ }^{3}$, Mirian Sakhelashvili ${ }^{4}$
${ }^{1}$ Georgian Technical University, Tbilisi, Georgia
${ }^{2} \mathrm{~N}$. Muskhelishvili Institute of Computational Mathematics of the
Georgian Technical University, Tbilisi, Georgia
${ }^{3}$ Gori State Teaching University, Gori, Georgia
${ }^{4}$ School of Bank and Law
email: stsotniashvili@gmail.com

In the papers [1]-[5] there were discussed classification of logical operations receiving from using "or", "and", and "just or" conjunctions on three P, Q and R sentences paired, alternatively and multiple ways. As well their grammatical, set interpretations and circuits in Digital Electronics. This paper discusses similar circuits in case of conditional sentences operation (9 proposition), circuits of negations of the logical operations (21 circuits) and their grammatical, set interpretations. As well equivalent representations will be also given. This kind of grammatical interpretations is not discussed in English, in German and in Russian languages. Well-known denotations of classic operations will be given and possibility of changing them will be discussed.

References

[1] D. N. Zarnadze, Fundamentals of logical and analytical thinking. "Mtsignobari", Tbilisi, 2017.
[2] S. Tsotniashvili, T. Turashvili, D. N. Zarnadze, About using the "and or" and "or only" logical conjunctions in the Georgian language multiple times and on alternately ways. In Proceedings of the 8th International Scientific Conference, Gori State Teaching University, 2016.
[3] S. Tsotniashvili, D. N. Zarnadze, 3-Input circuits in digital electronics corresponding to logical operations. In Proceedings of the 8th International Scientific Conference, Gori State Teaching University, 2016.
[4] S. Tsotniashvili, T. Turashvili, D. N. Zarnadze, About using the "or" and "or only" logical conjunctions in the Georgian language multiple times and on alternately ways. In Proceedings of the 8th International Scientific Conference, Gori State Teaching University, 2015.
[5] S. Tsotniashvili, T. Turashvili, D. N. Zarnadze, Problems of inculcating some logical terms. In Proceeding of the 7th International Scientific Conference, Gori State Teaching University, 2014.

The Consistent Estimators for Statistical Structures

Zurab Zerakidze ${ }^{1}$, Mzevinar Patsatsia ${ }^{2}$
${ }^{1}$ Gori University, Gori, Georgia
email: zura.zerakidze@mail.ru
${ }^{2}$ Sokhumi State University, Tbilisi, Georgia
email: mzevip54@mail.ru

Let there is given (E, S) measurable space and on this space there given $\left\{\mu_{i}, i \in I\right\}$ family of probability measures defined on S, the I is set of parameters.
Definition 1. A statistical structure is called the set of objects $\left\{E, S, \mu_{i}, i \in I\right\}$, where (E, S) is a measurable space and $\left\{\mu_{i}, i \in I\right\}$ is a family of probability measures on it.
Definition 2. A statistical structure $\left\{E, S, \mu_{i}, i \in I\right\}$ is called strongly separable if there exists disjoint family of S-measurable sets $\left\{X_{i}, i \in I\right\}$ such that the relations are fulfilled:

$$
\mu_{i}\left(X_{i}\right)=1 \quad \forall i \in I
$$

Definition 3. A linear subset $M_{B} \subset M^{\sigma}$ is called a Banach space of measures if:

1) one can define a norm on M_{B} under which M_{B} will be a Banach space and for any orthogonal measures $\mu, \nu \in M_{B}$, and real number $\lambda \neq 0$ the equality $\|\mu+\lambda \nu\| \geq\|\mu\|$ is fulfilled;
2) if $\mu \in M_{B},|f(x)| \leq 1$, then $\nu_{f}(A)=\int_{A} f(x) \mu(d x) \in M_{B}$ and $\left\|\nu_{f}\right\| \leq\|\mu\|$;
3) if $\nu_{n} \in M_{B}, \nu_{n}>0, \nu_{n}(E)<+\infty(\forall n \in N)$ and $\nu_{n} \downarrow 0$ then for any linear functional $l^{*} \in M_{B}^{*}: \lim _{n \rightarrow \infty} l^{*}\left(\nu_{n}\right)=0$.

Let $\xi_{i}(t)\left(i \in I, t \in T \subset R^{n}\right)$ be the Gaussian real homogeneous field on T with zero mean and correlation function $R_{i}(t-s), i \in I ; t, s \in T$. Let

$$
\int_{R^{n}} \int_{R^{n}} \frac{\left|\widetilde{b}_{i, j}(\lambda, \mu)\right|^{2}}{f_{i}(\lambda) f_{j}(\mu)} d \lambda d \mu=+\infty \quad \forall i, j \in I
$$

where $\widetilde{b}_{i, j}(\lambda, \mu)$ is Fourier transformation of $b_{i, j}(t, s)=R_{i}(t, s)-R_{j}(, s t), i, j \in I$. Then the corresponding probability measures μ_{i} and μ_{j} are pairwise orthogonal.

Definition 4. Let's say that the statistical structure $\left\{E, S, \mu_{i}, i \in I\right\}$ admits a consistent estimators of parameters $i \in I$, if there exists at least one measurable map $\delta:(E, S) \rightarrow$ $(I, B(I))$, such that $\bar{\mu}_{i}(\{x: \delta(x)\})=1 \forall i \in I$.
Theorem. Let $M_{B}=\bigoplus_{i \in I} M_{B_{i}}$ be a Banach space of measures; E be the complete metric space whose topological weights are not measurable in a wider sense; S be the Borel σ algebra in E and cardI $\leq c$. Then in the theory (ZFC) \& (MA) the Gaussian orthogonal statistical structure $\left\{E, S, \mu_{i}, i \in I\right\}$ admits a consistents estimators of $i \in I$ if and only if the correspondence $f \rightarrow l_{f}$ defined by the equality $\int_{E} f(x) \mu_{j}(d x)=l_{f}\left(\mu_{j}\right), \mu_{j} \in M_{B}$, is one-to-one (here l_{f} is linear functional on $M_{B} f$).

References

[1] I. Sh. Ibramhalilov, A. V. Skorohod, Consistent estimators of parameters of random processes. (Russian) "Naukova Dumka", Kiev, 1980.
[2] Z. S. Zerakidze, Banach space of measures. Probability theory and mathematical statistics, Vol. II (Vilnius, 1989), 609-616, "Mokslas", Vilnius, 1990.

Numerical Simulation of Some Non-Classical Elasticity Problems for half-Plane by Boundary Element Method

Natela Zirakashvili
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: natzira@yahoo.com

Abstract

The paper set a non-classical problems, which formulate in the following way: what normal stress supposed to be applied on part of the boundary, that at the segment lying inside the homogeneous isotropic elastic half-plane to obtain a pre-given conditions. The problems solved by Boundary element method [1]. Testable examples are given, which shows us, that what the normal stress supposed to be applied on part of the boundary, that at the segment lying inside the body to obtain a pre-given stress or displacement. Represented the numerical results, appropriate graphics, mechanical and physical interpretation this problems.

References

[1] S. L. Crouch, A. M. Starfield, Boundary element methods in solid mechanics. With applications in rock mechanics and geological engineering. George Allen \& Unwin, London-Boston, Mass., 1983.

About Mathematics Teacher to Assess the Work Performed by the Student

Manana Zivzivadze
Department of Teaching Methods, Akaki Tsereteli State University, Kutaisi, Georgia
email: manana.zivzivadze@atsu.edu.ge

Today, when it is important to move on to the new system of assessment of the teacher's activity, it is especially noteworthy how the teacher evaluates the task performed by the pupil. An assessment of pupil by the teacher is a necessary component of learning and teaching quality management. Correct assessment is equally important for both parties involved in the teaching process. A last kind of task from the teacher's subject examination
is presented in the work. In particular, assessment of the work performed by the pupil. During the assessment the teacher finds faults and gives pupil relevant recommendations.

Definition of Deflected Mode of Anisotropical Cylindrical Body at the Irregular Temperature Influence

Roland Zivzivadze
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
email: rolandi.zivzivadze@gmail.com

As it is known, determination of tensed-deformated condition of log of cylindrical shape belongs to the group of spatial objectives of mechanics of deformative bodies. The spatial objectives like this, on the basis of the classical elasticity, as a rule is accompanied to solve the flat objectives with the help of several hypothetic assumptions(among them the principle of Saint-Venant), with what, it is evident, their exact solving is not reached. In the work the task of deflected anisotropic cylindrical circular-section body, mounted on either end motionlessly is studied at the irregular temperature influence. Without the usage of hypothetical assumptions (among them Saint-Venant principle) the exact solution of the task is given with the collocation method. The coordinate system without dimension is used in cylindrical coordinates. With the help of corresponding transformation of set objectives, basic equations of theory of elasticity are portrayed. The internal strain and the relocate components are found, which satisfy the corresponding boundary conditions of the task, also the equilibrium equations and physical equations.

Index

Ökten H．H．，138， 139

งмоэ3๐ 8．， 53
sепоэз 8．b．， 51
лмзјьо ட．，54， 181
งд๖мемд̀னщ๐ д．， 55

งฮ̋mணழ๐ д．， 56

oumody 3．，33， 63

длд兀œэ๖ о．， 174
дэœ๐буод домо д．， 108

дупоงддомо д．， 68

доßงณั Һ．， 70

onfody m．， 72
onpodg l．， 72

дußghomody m．， 91
8．xog3o g̊．b．， 91
393 m mfosbo Ј．， 92
$39^{m o d} 9$ 8．， 92

змдодапмп з．， 96
zmgmbos 3．，36， 97

зŋ๓งณ๐๐ д．， 87

Зうœŋゝ 9．， 100

＠gobsd． д．， 80
＠コ3 3 bmoda 3．， 81
œosbっdody ว．， 81
œ๐д3ою๐ д．， 82
＠уœэЯьдз щ．， 35
œэбœコง ठ．， 83

$9^{\text {b }}$ ๖っл $3 ., 85$
$3^{\text {sdugnoda }}$ ．．，143， 160
$3^{\text {sbubos 6．，} 44}$
393 วั о．， 131
39эb 3 Јd9 о．， 179

o̊gпyjoda 8．， 183

ogogวdg ※．， 172

олддомп 3．，88，105，107， 108
олдјомо 6．，88，105－－107
ogubodg＠．， 110
0马Збпдว д．， 110
омழотпда 3．，54，181， 182
ом＠оподо э．， 180
одблоддомо щ．， 108

oylogmas 3．о．， 49

juł̧ubodg 6．， 114

зуподмза б．， 53

змломлд̈яомо 3．， 41

 156

＠
mmanda $0 ., 113$

дsmody ø．，147，149－－151，153，154， 156
дऽдğmпоs д．， 131
дьБœм д．ง．， 136
дл5хл3одя 6．， 131
dлmulo 3．．m．， 132

วงfotsomos 3．， 131

дуठัmbos о．， 133
дgmodg з．， 79

дouクßっd9 3．，117， 134

amglogloston o．， 135
Amglglonsto o．д．， 136
дмпмо̊мда 6．\％．， 65

วๆ3355 о．১．， 41
ддоблподаомо щ．， 69
6ऽठัo930 з．，70，122，138， 139
БЈgo 3．g̊．， 89

бозмщуодапмо э．， 140

мœодлґゥь 3．，141， 164

ЗЗзобо Ј．，109， 122
390̊mmbosto 3．， 146
mmgo3s х．，99， 160
пŋјboos b．， 161

luabsmody o．， 162
lsteoges s．， 163
bubgmoддпмп д．， 182

bgubsda j．，$^{2} 168$

〇゚งウのgツodg 3．，42， 140

જ̊odys m．， 161
g̊ma3ng̊to z．， 157

gmanobs 6．， 90

d3 3oosdy ô．， 127
d3 3 onsdy ㄸ．， 126

jomos o．， 121

yogosto 3．， 121

дงдоздฎом๐ д．， 165

Bunģo̊oc b．， 120
Вомьßлды ш．，75－－77
Rodjobody д．，147，149－－151，153，154， 156
Boßys 3．，147，149－－151，153，154， 156
（3）Јろ๖ д．， 35
（3）

dodogyº（ $\mathfrak{6}$ ．， 84

Fo3 0 ºg odg o．， 84

あзゝ＠ys m．， 34

bงбдздоп д．， 118

bゝ๘д！
bgßoбsддомо $0 ., 82$
bamegalo s．， 120

үэృд๖ృ๐ ง．， 73

злмпо 9．， 180

үзбозидопмо б．， 141
зибхмлзы п．．，98， 111
үumdjomo 3 ．， 82
犭ogumody 0．， 116

zodos 3．，112， 113
xofodg m．， 175

Abazari R．， 182
Adeishvili V．， 80
Aliev A．B．， 49
Aliev B．A．， 50
Aliyev Z．S．，51， 53
Alkan S．，54， 181
Amaglobeli M．， 55
Ambroladze A．， 56
Ashordia M．， 56
Aữenhofer L．， 58
Azizi karachi M．， 58
Babilua P．，60， 61
Badzagua I．， 174
Baghaturia 3．， 62
Bakuradze M．， 63
Baladze V．，33， 63
Barnafoldi G．G．， 36
Barsegian G．， 64
Bauer S．M．， 65
Bayramov S．，66， 101
Bedineishvili M．， 108
Beklaryan L．A．， 67
Beriashvili I．， 149
Beriashvili Sh．， 68
Beridze A．，33， 69
Bezhuashvili Yu．， 70
Bi■er 8， 70
Bishara A．， 71
Bitsadze L．， 72
Bitsadze R．， 72
Bitsadze S．， 72
Butchukhishvili M．， 73

Cafarli V., 66
Cakmak A., 73
Celik E., 180
Chakaberia M., 74
Chargazia K., 120
Chichua G., 147, 149--151, 153, 154, 156
Chikvinidze M., 147, 149--151, 153, 154, 156
Chilachava T., 75--77
Chkadua O., 34
Davitashvili T., 78, 79, 162
Deisadze M., 80
Dekanoidze G., 81
Diasamidze M., 81
Djagmaidze A., 94
Dochviri B., 82
Duduchava R., 35
Dundua B., 83
Dzagnidze O., 84
Dzidziguri Ts., 84
Ekhvaia G., 85
Elerdashvili E., 175
Elizbarashvili M., 90
Erturk V.S., 86
Fakharzadeh A., 58
Fakharzadeh J. A., 87
Fedulov G., 88
Figula d., 89
Fokina N., 90
Gロrsoy O., 102
Gachechiladze R., 91
Gadjiev T.S., 91
Geladze G., 92
Gevorkyan A., 92
Giorgadze T., 93
Giorgadze Z., 63
Giorgashvili L., 94
Giorgobiani G., 95
Giorgobiani J., 95
Gogishvili G., 96
Gogokhia V., 36, 97
Gol'dshtein V., 97
Goodarzi M., 87
Gulua B., 98
Gulua D., 99
Gulua E., 100

Gunduz Aras C., 66, 100, 101
Guterman A. E., 37
Gvinjilia Ts., 77
Harutyunyan A. V., 103
Hayrapetyan H., 104
Hesameddini E., 58
Huseynova R.A., 51
IDikay S., 109
Iashvili G., 88, 105, 107, 108
Iashvili N., 88, 105--107
Imnaishvili L., 108
Incesu M., 102
Irandoust-Pakchin S., 109
Ivanidze D., 110
Ivanidze M., 110
Jamshidzadeh Sh., 182
Janikashvili N., 141
Janjgava R., 98, 111
Jaoshvili V., 82
Japaridze I., 116
Jikia V., 113
Jikia V.Sh., 112
Jikidze L., 175
Jobava R., 174
Kachakhidze N., 114
Kalyabin G. A., 38
Karalashvili L., 115
Karseladze G., 162
Kashtanova S.V., 65
Kemoklidze T., 116
Kereselidze J., 117
Kereselidze N., 116
Kerimov N.B., 53
Khalvashi E., 90
Khanehgir M., 118
Kharashvili M., 94
Kharazishvili M., 118
Kharshiladze N., 85
Kharshiladze O., 120
Khechinashvili Z., 82
Khmaladze E., 39
Khvoles A., 120
Kipiani G., 121
Kiria T., 121
Kirtadze Sh., 80
Kiziltug S., 73

Ko■ar B., 122
Kokilashvili V., 41
Kurtanidze L., 123
Kurtskhalia D., 147, 149--151, 153, 154, 156
Kutaladze N., 123
Kutkhashvili K., 124
Kutsia T., 83
Kvaratskhelia V., 125
Kvaratskheliya T. M., 126
Kvatadze R., 126
Kvatadze Z., 127
Labadze L., 128
Lomidze I., 113
Magrakvelidze D., 128
Maharramova T., 91
Makatsaria G., 131
Makharadze D., 130
Malidze Sh., 147, 149--151, 153, 154, 156
Mamporia B., 131
Manjavidze N., 131
Marasi H.R., 132
Marinescu G., 103
Mdzinarishvili L., 69
Mebonia I., 133
Meladze H., 79
Menteshashvili $\partial ., 62$
Metreveli D., 162
Mikuchadze G., 117, 134
Modebadze Z., 134
Moradian Khaibary M., 118
Morozov N.F., 65
Movsisyan Yu., 135, 136
Muhanna Y. A., 41
Muradoglu Z., 137
Nachkebia M., 95
Nadaraya E., 60
Nagy P. T., 89
Najafzadeh Sh., 137
Nebiyev C., 70, 122, 138, 139
Ni \square anc \square T \square rkmen B., 177
Nikoleishvili A., 140
Nikoleishvili M., 140
Odisharia K., 141, 164
Odisharia V., 141, 164

Papukashvili A., 143, 160
Papukashvili G., 144
Patsatsia M., 61, 183
Pekin A., 109, 122
Peradze J., 145
Petrosyan V., 146
Pharjiani B., 127
Pkhakadze K., 147, 149--151, 153, 154, 156
Pkhakadze S., 157, 161
Purtukhia O., 158
Rogava J., 99, 160
Rukhaia Kh., 161
Sadunishvili G., 162
Sakhelashvili M., 182
Samkharadze I., 162
Sandikci A., 163
Sepiashvili T., 164
Shareidze N., 123
Sharikadze M., 144
Shashiashvili M., 165
Shavgulidze K., 166
Shervashidze T., 127
Shurgaia A., 97
Sulava L., 167
Surguladze T., 168
Svanadze K., 168
Svanadze M. M., 169
T■rkmen E., 177
Takidze I., 81
Tarieladze V., 42, 140
Tediashvili Z., 170
Tephnadze G., 43
Tetunashvili Sh., 44
Tetunashvili T., 171
Tetvadze G., 172
Tetvadze L., 172
Tevdoradze M., 92
Tibua L., 161
Tikanadze L., 172
Tompits H., 157
Topuridze N., 56
Tsaava M., 35
Tsagareishvili V., 178
Tsanava Ts., 130
Tsereteli P., 141, 164, 174
Tsibadze L., 172

Tsiklauri Z., 114
Tsinaridze R., 33
Tsivtsivadze I., 84
Tsotniashvili S., 182
Tsutskiridze V., 175
Turashvili T., 176
Tutberidze G., 178
Umarkhadzhiev S., 179
Vakhania N., 44
Vashakidze Z., 143, 160
Vekua T., 131
Vepkhvadze T., 179
Yildirim F., 180
Yildirim K., 54, 181, 182
Yurttancikmaz S., 73
Yusifova G.I., 49
Zarnadze D., 182
Zazashvili Sh., 94
Zerakidze Z., 183
Zirakashvili N., 185
Zivzivadze M., 185
Zivzivadze R., 186

