
VRE for regional Interdisciplinary

communities in Southeast Europe and

the Eastern Mediterranean

Software techniques for optimization for the
Intel Xeon Phi coprocessors

Emanouil Atanassov
Institute of Information and Communication Technologies - BAS

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 1

Outline

 About the Xeon Phi coprocessor

 Software configuration at the coprocessor

 Cross-compiling with development tools

 Using vtune etc. – to be skipped

 How to use profiling information

 3 types of using the coprocessor

 Environmental variables that control execution

 Using MKL automatic offload with the coprocessor

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 2

The Xeon Phi coprocessor

❑ The Xeon Phi coprocessor is in our system an add-on card
that is plugged-in into something that looks like a regular
server, starts-up its own OS image and can communicate
using Ethernet or Infiniband.

❑ Our version is Xeon Phi 7120P. It has 61 physical cores, 16 GB
RAM.

❑ Frequency 1232.263 Mhz.

❑ Each core can run 4 independent hardware threads of
execution.

❑ Typically one core is reserved for the OS, but this is not
enforced.

❑ Has vector unit for floating point, where 8 double precision
numbers or 16 float point numbers can be processed in one
instruction. This is the main advantage of having Xeon Phi.

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 3

Types of application execution - offload

❑Offload mode – application is started on the normal CPU, some
subroutines are executed actually on the Xeon Phi.

❑More than one card may be used.

❑ Programmers can control the offloading

❑Users can also control the offloading, for example via environment
variables.

❑ Cheap way to introduce execution on Xeon Phi only for some parts of
otherwise complex codes.

❑Not future-proof

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 4

Types of application execution - native

❑Native mode – application is executed only on the Xeon Phi.

❑Usually application is cross-compiled on the server, then via ssh is
launched on the Xeon Phi.

❑When using configure, add:
 --host=x86_64-k1om-linux

❑One should control LD_LIBRARY_PATH to make sure all libraries are
available.

❑ Same directories like /home, /opt/intel, etc. are available in Xeon Phi.

❑ Architecture is obviously different

❑ Some instructions from the x86_64 instruction set are missing on Xeon
Phi, therefore some assembly code will not compile or execute properly.

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 5

Types of application execution –
symmetric mode

❑ In symmetric mode the application is using both the CPU and the Xeon
Phi.

❑ In our case – 2 CPUs and 2 Xeon Phi coprocessors.

❑Usually MPI is used to launch different applications – one for the CPUs
and the other for the Xeon Phi.

❑ The main server is a NUMA machine, although it is with shared memory.

❑Memory is allocated on “first touch” – if one of the two CPUs first
touches virtual memory region, this region is allocated from memory
that is physically close to this CPU.

❑ It is logical to have at least two MPI processes and then to use OpenMP
for each process with 8 or 16 threads. With hyperthreading – 2x16
threads in total, without hyperthreading – 2x8 threads.

❑ Communication between the MPI processes happens over infiniband

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 6

Types of application execution

❑ The symmetric mode is the most advanced. However, it requires two
executables to be created and load-balancing between them to be
performed – it is complicated.

❑ The native mode can be a first step to symmetric mode. The result may
be good enough.

❑ The offload mode is “cheap” in the sense that a complex application
which depends on outside libraries that are not always available on the
Xeon Phi can still use the floating point power of Xeon Phi in some
routines.

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 7

How to use the advantages of Xeon Phi

❑Using libraries that make use of its floating point capabilities
❑ MKL

❑ Others

❑Developing software with automatic or manual vectorization
❑ The Intel Compilers may be able to use the vector capabilities of Xeon Phi

❑ Developers may use hints or directives to help the compiler

❑ The GCC compiler is not able to use the vector capabilities of Xeon Phi currently

❑Using applications that are optimized for Xeon Phi –
❑ Nothing special to be done in this case – just run the application

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 8

Using MKL on Xeon Phi

❑ Some MKL routines are specifically optimized for Xeon Phi

❑ When compiling for native execution on Xeon Phi, this routines are automatically used.

❑ Automatic offload happens when problem size is big enough

❑ It includes the following routines:

❑ ?GEMM, ?SYMM, ?TRMM, and ?TRSM

❑ LU, QR, Cholesky factorizations

❑ Can be enabled or disables:

❑rc = mkl_mic_enable() – in the code

❑MKL_MIC_ENABLE=1 – via environment variable (in bash shell).

❑ If OFFLOAD_REPORT is on, users can use the function mkl_mic_set_offload_report() to
dynamically turn on/off reporting to understand what is happening.

❑ MKL_MIC_DISABLE_HOST_FALLBACK=1 - disable the automatic fallback to the host - find bugs.

❑ OMP_NUM_THREADS becomes MIC_OMP_NUM_THREADS, KMP_AFFINITY becomes
MIC_KMP_AFFINITY for the MIC

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 9

Using MKL on Xeon Phi

❑ MKL is highly optimized. It contains routines for:

❑ Basic Linear Algebra Subprograms (BLAS):

❑ Sparse BLAS Level 1, 2, and 3 (basic operations on sparse vectors and matrices)

❑ LAPACK routines for solving systems of linear equations

❑ LAPACK routines for solving least squares problems, eigenvalue and singular value problems,
and Sylvester's equations

❑ ScaLAPACK computational, driver and auxiliary routines

❑ PBLAS routines for distributed vector, matrix-vector, and matrix-matrix operation

❑ Direct and Iterative Sparse Solver routines

❑ Vector Mathematics (VM) functions for computing mathematical functions on vectors

❑ Vector Statistics (VS) functions for generating vectors of pseudorandom numbers

❑ General Fast Fourier Transform (FFT) Functions

❑ Cluster FFT functions

❑ Tools for solving partial differential equations

❑ Optimization Solver routines for solving nonlinear least squares problems through the Trust-
Region (TR) algorithms and computing Jacobi matrix by central differences

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 10

https://software.intel.com/node/c4d9886d-82eb-4a26-aa1e-3cf95c6b6e18
https://software.intel.com/node/c4d9886d-82eb-4a26-aa1e-3cf95c6b6e18
https://software.intel.com/node/c4d9886d-82eb-4a26-aa1e-3cf95c6b6e18
https://software.intel.com/node/c4d9886d-82eb-4a26-aa1e-3cf95c6b6e18
https://software.intel.com/node/204f7218-7c97-4a08-8aff-42c66614be6d
https://software.intel.com/node/7ebab0a2-9e1c-4aed-becd-600b9429985d
https://software.intel.com/node/7ebab0a2-9e1c-4aed-becd-600b9429985d
https://software.intel.com/node/305a629e-760e-4280-ac66-fcb2328e7447
https://software.intel.com/node/305a629e-760e-4280-ac66-fcb2328e7447
https://software.intel.com/node/305a629e-760e-4280-ac66-fcb2328e7447
https://software.intel.com/node/60646430-d2c3-40c2-94f4-9acb545c0a13
https://software.intel.com/node/dae44088-94b2-4cc9-8c46-c219243b96c4
https://software.intel.com/node/dae44088-94b2-4cc9-8c46-c219243b96c4
https://software.intel.com/node/b0518cda-e6e4-4423-acaf-bcea7a71a63b
https://software.intel.com/node/b0518cda-e6e4-4423-acaf-bcea7a71a63b
https://software.intel.com/node/a8000c73-da1b-4263-864d-eac93e28aa5b
https://software.intel.com/node/0ad0d8cb-fee0-4862-b88c-620256429263
https://software.intel.com/node/0ad0d8cb-fee0-4862-b88c-620256429263
https://software.intel.com/node/0ad0d8cb-fee0-4862-b88c-620256429263
https://software.intel.com/node/2e33e8fa-b262-4065-aac6-ccc5f6a22a09
https://software.intel.com/node/2e33e8fa-b262-4065-aac6-ccc5f6a22a09
https://software.intel.com/node/a20eb694-9c48-44f9-a436-2857b624fa04
https://software.intel.com/node/a20eb694-9c48-44f9-a436-2857b624fa04
https://software.intel.com/node/1484e4ba-20c1-4aa7-96e4-ba5eaa75e66b

Using MKL on Xeon Phi

❑ If an application fails to run on the MIC because of not found dynamic
libraries, fix LD_LIBRARY_PATH

❑Use ldd to find which libraries are not found and look for them.

❑ Sometimes static linking makes faster executables, but beware that
application may fail to run after the glibc library on the system is
upgraded.

❑ In general, some libraries are more difficult to be found for static linking
(.a suffix vs .so suffix).

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 11

Specifics of Xeon Phi

❑ Using Xeon Phi instead of just CPU is useful if its floating points capabilities are used.

❑ Xeon Phi can not achieve its maximum if only one hardware thread per core is used

❑ That is why it is normal to use more threads (or MPI processes) on the MIC.

❑ One can try with 60, 61, 120, 122, 180, 183, 240, 244 to see which is fastest.

❑ For OpenMP programs – use OMP_NUM_THREADS.

❑ For MKL offload – use MIC_OMP_NUM_THREADS

❑ export MIC_ENV_PREFIX=MIC

❑ export MIC_OMP_NUM_THREADS=60

❑ When combining MPI and OpenMP, use

–genv MIC_OMP_NUM_THREADS

instead

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 12

Environmental variables controlling MPI
execution

❑Many variables control MPI communications at execution time.

❑Use I_MPI_DEBUG to display some debugging info if program not
starting for example

❑Use I_MPI_STATS to collect statistics.

❑ See which routines are most used.

❑ I_MPI_FABRICS=shm:dapl – if it is not the default, it can be better

❑ I_MPI_FABRICS=shm:ofa – usually slower.

❑ I_MPI_ADJUST_REDUCE=2 – select second algorithm for reduce.

❑ I_MPI_DAPL_SCALABLE_PROGRESS=1 – can be better or not

❑ I_MPI_DAPL_US=enable – can be better or not

❑ I_MPI_FALLBACK=disable - find bugs in configuration, otherwise
program runs slow

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 13

Compilation of hybrid applications

❑ Hybrid applications that use both MPI and OpenMP can be compiled only if the proper
options are used and the MPI library supports it.

❑ MPI library from Intel does support that mode.

❑ Version of openmpi that presumably supports this mode is also available.

❑ Version of openmpi without the overhead of such support will be faster if no OpenMP
is used.

❑ To use the multithreaded version of the MPI library, load with option release_mt

❑ To compile properly, add option –mt_mpi to mpiicc (or mpiifort).

❑ When starting, use instead of MPI_INIT

❑ int required_level=MPI_THREAD_SERIALIZED;

❑ int provided_level;

❑ MPI_Init_thread(&argc, &argv, required, &provided);

❑ Always check if provided_level==required_level, program may not fail immediately
and the bug will be difficult to understand.

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 14

Conclusions

❑Use the path of least resistance

❑Many options are available even for non-developers to improve
application performance

❑ Little testing can give lots of speed improvement.

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 15

❑ Launch job log on to MIC, see what is there

❑ top

❑ cat /proc/cpuinfo

❑ ifconfig

❑mount

❑Hello MIC program – native

❑MKL example Monte Carlo – simple - job

❑MKL example Monte Carlo – complicated – OpenMP + MPI on MIC

❑MKL example Monte Carlo – complicated symmetric - combine HOST +
MIC

❑ start vtune – demo

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 16

OpenMP example

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

#define CHUNKSIZE 10

#define N 100

int main (int argc, char *argv[]){

int nthreads, tid, i, chunk;

float a[N], b[N], c[N];

for (i=0; i < N; i++)

 a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid)

 {

 tid = omp_get_thread_num();

 if (tid == 0)

 {

 nthreads = omp_get_num_threads();

 printf("Number of threads = %d\n", nthreads);

 }

 #pragma omp for schedule(dynamic,chunk)

 for (i=0; i<N; i++)

 {

 c[i] = a[i] + b[i];

 printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);

 }

 } /* end of parallel section */

}

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 17

OpenMP example

❑ Copy example omp_test.sh and omp_test.c

❑ icc -qopenmp omp_test.c -o omp_test.out

❑OMP_THREAD_NUM=12 ./omp_test.out

❑ Can be run on the head node

❑Now try for the mic:

❑ Copy example omp_test.sh and omp_test.c

❑ Compile and submit

❑ icc -qopenmp –mmic omp_test.c -o omp_test.out

❑ qsub –q edu omp_test.sh

❑Note the LD_LIBRARY_PATH

❑ Set OMP_NUM_THREADS=122 and run again.

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 18

OpenMP using mkl

#include <stdio.h>

#include <omp.h>

#include "mkl_vsl.h"

#define BLOCK 100

#define ITER 1000

int main(){

double s=0.;

#pragma omp parallel default(none) reduction(+:s)

{

 double buff[BLOCK];

VSLStreamStatePtr stream; // Select type of VSLStreamStatePtr stream;

int seed_val=omp_get_thread_num();

vslNewStream(&stream, VSL_BRNG_WH, (int)seed_val);

int i;

for (i=0; i<ITER; i++) {

 if (i % omp_get_num_threads() == omp_get_thread_num()){

 vdRngGaussian (VSL_RNG_METHOD_GAUSSIAN_ICDF, stream, BLOCK, buff, 5, 2);

 for (int j=0;j<BLOCK;j++){

 s += buff[j];

 }

 }

}

s=s/ITER/BLOCK;

vslDeleteStream(&stream);

}

 /* Printing results */

 printf("Sample mean of normal distribution = %f\n", s);

 return 0;

}

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 19

MPI + OpenMP + MKL

❑ mpiicc -mt_mpi -mkl -qopenmp mpi_test.c

❑ ^^^^^^^

❑Do not forget

❑ Load the release_mt version of MPI_LIBRARY

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”, Sofia, Bulgaria, 7 July 2016 20

