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The Xeon Phi coprocessor 

❑ The Xeon Phi coprocessor is in our system an add-on card 
that is plugged-in into something that looks like a regular 
server, starts-up its own OS image and can communicate 
using Ethernet or Infiniband. 

❑ Our version is Xeon Phi 7120P. It has 61 physical cores, 16 GB 
RAM.  

❑ Frequency 1232.263 Mhz. 

❑ Each core can run 4 independent hardware threads of 
execution.  

❑ Typically one core is reserved for the OS, but this is not 
enforced.  

❑ Has vector unit for floating point, where 8 double precision 
numbers or 16 float point numbers can be processed in one 
instruction. This is the main advantage of having Xeon Phi.  
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Types of application execution - offload 

❑Offload mode – application is started on the normal CPU, some 
subroutines are executed actually on the Xeon Phi. 

❑More than one card may be used. 

❑ Programmers can control the offloading 

❑Users can also control the offloading, for example via environment 
variables.  

❑ Cheap way to introduce execution on Xeon Phi only for some parts of 
otherwise complex codes. 

❑Not future-proof 

 

 

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”,  Sofia, Bulgaria,  7 July 2016   4 



Types of application execution - native 

❑Native mode – application is executed only on the Xeon Phi.  

❑Usually application is cross-compiled on the server, then via ssh is 
launched on the Xeon Phi. 

❑When using configure, add: 
 --host=x86_64-k1om-linux 

❑One should control LD_LIBRARY_PATH to make sure all libraries are 
available.  

❑ Same directories like /home, /opt/intel, etc. are available in Xeon Phi. 

❑ Architecture is obviously different 

❑ Some instructions from the x86_64 instruction set are missing on Xeon 
Phi, therefore some assembly code will not compile or execute properly. 
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Types of application execution – 
symmetric mode 

❑ In symmetric mode the application is using both the CPU and the Xeon 
Phi. 

❑ In our case – 2 CPUs and 2 Xeon Phi coprocessors.  

❑Usually MPI is used to launch different applications – one for the CPUs 
and the other for the Xeon Phi. 

❑ The main server is a NUMA machine, although it is with shared memory.  

❑Memory is allocated on “first touch” – if one of the two CPUs first 
touches virtual memory region, this region is allocated from memory 
that is physically close to this CPU. 

❑ It is logical to have at least two MPI processes and then to use OpenMP 
for each process with 8 or 16 threads. With hyperthreading – 2x16 
threads in total, without hyperthreading – 2x8 threads. 

❑ Communication between the MPI processes happens over infiniband  
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Types of application execution  

❑ The symmetric mode is the most advanced. However, it requires two 
executables to be created and load-balancing between them to be 
performed – it is complicated.  

❑ The native mode can be a first step to symmetric mode. The result may 
be good enough. 

❑ The offload mode is “cheap” in the sense that a complex application 
which depends on outside libraries that are not always available on the 
Xeon Phi can still use the floating point power of Xeon Phi in some 
routines.  
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How to use the advantages of Xeon Phi  

❑Using libraries that make use of its floating point capabilities 
❑ MKL 

❑ Others 

❑Developing software with automatic or manual vectorization  
❑ The Intel Compilers may be able to use the vector capabilities of Xeon Phi 

❑ Developers may use hints or directives to help the compiler 

❑ The GCC compiler is not able to use the vector capabilities of Xeon Phi currently 

❑Using applications that are optimized for Xeon Phi – 
❑ Nothing special to be done in this case – just run the application 
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Using MKL on Xeon Phi 

❑ Some MKL routines are specifically optimized for Xeon Phi 

❑ When compiling for native execution on Xeon Phi, this routines are automatically used. 

❑ Automatic offload happens when problem size is big enough 

❑ It includes the following routines: 

❑ ?GEMM, ?SYMM, ?TRMM, and ?TRSM  

❑ LU, QR, Cholesky factorizations 

❑ Can be enabled or disables: 

❑rc = mkl_mic_enable( ) – in the code 

❑MKL_MIC_ENABLE=1 – via environment variable (in bash shell). 

❑ If OFFLOAD_REPORT is on, users can use the function mkl_mic_set_offload_report() to 
dynamically turn on/off reporting to understand what is happening. 

❑ MKL_MIC_DISABLE_HOST_FALLBACK=1  - disable the automatic fallback to the host - find bugs. 

❑ OMP_NUM_THREADS becomes MIC_OMP_NUM_THREADS, KMP_AFFINITY becomes 
MIC_KMP_AFFINITY for the MIC 
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Using MKL on Xeon Phi 

❑ MKL is highly optimized. It contains routines for: 

❑ Basic Linear Algebra Subprograms (BLAS): 

❑ Sparse BLAS Level 1, 2, and 3 (basic operations on sparse vectors and matrices) 

❑ LAPACK routines for solving systems of linear equations 

❑ LAPACK routines for solving least squares problems, eigenvalue and singular value problems, 
and Sylvester's equations 

❑ ScaLAPACK computational, driver and auxiliary routines  

❑ PBLAS routines for distributed vector, matrix-vector, and matrix-matrix operation 

❑ Direct and Iterative Sparse Solver routines 

❑ Vector Mathematics (VM) functions for computing mathematical functions on vectors 

❑ Vector Statistics (VS) functions for generating vectors of pseudorandom numbers 

❑ General Fast Fourier Transform (FFT) Functions 

❑ Cluster FFT functions  

❑ Tools for solving partial differential equations  

❑ Optimization Solver routines for solving nonlinear least squares problems through the Trust-
Region (TR) algorithms and computing Jacobi matrix by central differences 

“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”,  Sofia, Bulgaria,  7 July 2016   10 

https://software.intel.com/node/c4d9886d-82eb-4a26-aa1e-3cf95c6b6e18
https://software.intel.com/node/c4d9886d-82eb-4a26-aa1e-3cf95c6b6e18
https://software.intel.com/node/c4d9886d-82eb-4a26-aa1e-3cf95c6b6e18
https://software.intel.com/node/c4d9886d-82eb-4a26-aa1e-3cf95c6b6e18
https://software.intel.com/node/204f7218-7c97-4a08-8aff-42c66614be6d
https://software.intel.com/node/7ebab0a2-9e1c-4aed-becd-600b9429985d
https://software.intel.com/node/7ebab0a2-9e1c-4aed-becd-600b9429985d
https://software.intel.com/node/305a629e-760e-4280-ac66-fcb2328e7447
https://software.intel.com/node/305a629e-760e-4280-ac66-fcb2328e7447
https://software.intel.com/node/305a629e-760e-4280-ac66-fcb2328e7447
https://software.intel.com/node/60646430-d2c3-40c2-94f4-9acb545c0a13
https://software.intel.com/node/dae44088-94b2-4cc9-8c46-c219243b96c4
https://software.intel.com/node/dae44088-94b2-4cc9-8c46-c219243b96c4
https://software.intel.com/node/b0518cda-e6e4-4423-acaf-bcea7a71a63b
https://software.intel.com/node/b0518cda-e6e4-4423-acaf-bcea7a71a63b
https://software.intel.com/node/a8000c73-da1b-4263-864d-eac93e28aa5b
https://software.intel.com/node/0ad0d8cb-fee0-4862-b88c-620256429263
https://software.intel.com/node/0ad0d8cb-fee0-4862-b88c-620256429263
https://software.intel.com/node/0ad0d8cb-fee0-4862-b88c-620256429263
https://software.intel.com/node/2e33e8fa-b262-4065-aac6-ccc5f6a22a09
https://software.intel.com/node/2e33e8fa-b262-4065-aac6-ccc5f6a22a09
https://software.intel.com/node/a20eb694-9c48-44f9-a436-2857b624fa04
https://software.intel.com/node/a20eb694-9c48-44f9-a436-2857b624fa04
https://software.intel.com/node/1484e4ba-20c1-4aa7-96e4-ba5eaa75e66b


Using MKL on Xeon Phi 

❑ If an application fails to run on the MIC because of not found dynamic 
libraries, fix LD_LIBRARY_PATH 

❑Use ldd to find which libraries are not found and look for them.  

❑ Sometimes static linking makes faster executables, but beware that 
application may fail to run after the glibc library on the system is 
upgraded.  

❑ In general, some libraries are more difficult to be found for static linking 
(.a suffix vs .so suffix). 
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Specifics of Xeon Phi 

❑ Using Xeon Phi instead of just CPU is useful if its floating points capabilities are used.  

❑ Xeon Phi can not achieve its maximum if only one hardware thread per core is used 

❑ That is why it is normal to use more threads (or MPI processes) on the MIC. 

❑ One can try with 60, 61, 120, 122, 180, 183, 240, 244 to see which is fastest.  

❑ For OpenMP programs – use OMP_NUM_THREADS. 

❑ For MKL offload – use MIC_OMP_NUM_THREADS 

❑ export MIC_ENV_PREFIX=MIC 

❑ export MIC_OMP_NUM_THREADS=60 

❑ When combining MPI and OpenMP, use  

–genv MIC_OMP_NUM_THREADS 

instead 
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Environmental variables controlling MPI 
execution 

❑Many variables control MPI communications at execution time.  

❑Use I_MPI_DEBUG to display some debugging info if program not 
starting for example 

❑Use I_MPI_STATS to collect statistics.  

❑ See which routines are most used.  

❑ I_MPI_FABRICS=shm:dapl – if it is not the default, it can be better 

❑ I_MPI_FABRICS=shm:ofa – usually slower. 

❑ I_MPI_ADJUST_REDUCE=2 – select second algorithm for reduce.  

❑ I_MPI_DAPL_SCALABLE_PROGRESS=1 – can be better or not 

❑ I_MPI_DAPL_US=enable – can be better or not 

❑ I_MPI_FALLBACK=disable  - find bugs in configuration, otherwise 
program runs slow 

 
“Introduction in Parallel Programming and Optimization for Intel Xeon Phi”,  Sofia, Bulgaria,  7 July 2016   13 



Compilation of hybrid applications 

❑ Hybrid applications that use both MPI and OpenMP can be compiled only if the proper 
options are used and the MPI library supports it.  

❑ MPI library from Intel does support that mode. 

❑ Version of openmpi that presumably supports this mode is also available.  

❑ Version of openmpi without the overhead of such support will be faster if no OpenMP 
is used.  

❑ To use the multithreaded version of the MPI library, load with option release_mt  

❑ To compile properly, add option –mt_mpi to mpiicc (or mpiifort). 

❑ When starting, use instead of MPI_INIT  

❑  int required_level=MPI_THREAD_SERIALIZED;   

❑  int provided_level; 

❑  MPI_Init_thread(&argc, &argv, required, &provided); 

❑ Always check if provided_level==required_level, program may not fail immediately 
and the bug will be difficult to understand.  
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Conclusions 

❑Use the path of least resistance 

❑Many options are available even for non-developers to improve 
application performance 

❑ Little testing can give lots of speed improvement. 
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❑ Launch job log on to MIC, see what is there 

❑ top 

❑ cat /proc/cpuinfo 

❑ ifconfig 

❑mount 

 

❑Hello MIC program – native 

❑MKL example Monte Carlo – simple - job 

❑MKL example Monte Carlo – complicated – OpenMP + MPI on MIC 

❑MKL example Monte Carlo – complicated symmetric  - combine HOST + 
MIC 

❑ start vtune – demo 
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OpenMP example 

#include <omp.h> 

#include <stdio.h> 

#include <stdlib.h> 

#define CHUNKSIZE   10 

#define N       100 

int main (int argc, char *argv[]){ 

int nthreads, tid, i, chunk; 

float a[N], b[N], c[N]; 

for (i=0; i < N; i++) 

  a[i] = b[i] = i * 1.0; 

chunk = CHUNKSIZE; 

#pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid) 

  { 

  tid = omp_get_thread_num(); 

  if (tid == 0) 

    { 

    nthreads = omp_get_num_threads(); 

    printf("Number of threads = %d\n", nthreads); 

    } 

  #pragma omp for schedule(dynamic,chunk) 

  for (i=0; i<N; i++) 

    { 

    c[i] = a[i] + b[i]; 

    printf("Thread %d: c[%d]= %f\n",tid,i,c[i]); 

    } 

  }  /* end of parallel section */ 

} 
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OpenMP example 

❑ Copy example omp_test.sh and omp_test.c 

❑ icc -qopenmp omp_test.c -o omp_test.out 

❑OMP_THREAD_NUM=12 ./omp_test.out  

❑ Can be run on the head node 

❑Now try for the mic: 

❑ Copy example omp_test.sh and omp_test.c 

❑ Compile and submit 

❑ icc -qopenmp –mmic omp_test.c -o omp_test.out 

❑ qsub –q edu omp_test.sh 

❑Note the LD_LIBRARY_PATH  

❑ Set  OMP_NUM_THREADS=122 and run again. 
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OpenMP using mkl 

#include <stdio.h> 

#include <omp.h> 

#include "mkl_vsl.h" 

#define BLOCK 100 

#define ITER 1000 

int main(){ 

double s=0.; 

#pragma omp parallel default(none) reduction(+:s) 

{ 

   double buff[BLOCK]; 

VSLStreamStatePtr stream; // Select type of VSLStreamStatePtr stream; 

int seed_val=omp_get_thread_num(); 

vslNewStream(&stream, VSL_BRNG_WH, (int)seed_val); 

int i; 

for ( i=0; i<ITER; i++ ) { 

        if (i % omp_get_num_threads() == omp_get_thread_num()){ 

                vdRngGaussian (VSL_RNG_METHOD_GAUSSIAN_ICDF, stream, BLOCK, buff, 5, 2); 

                for (int j=0;j<BLOCK;j++){ 

                         s += buff[j]; 

                } 

        } 

} 

s=s/ITER/BLOCK; 

vslDeleteStream( &stream ); 

} 

   /* Printing results */ 

   printf( "Sample mean of normal distribution = %f\n", s ); 

   return 0; 

} 
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MPI + OpenMP + MKL 

❑  mpiicc -mt_mpi -mkl -qopenmp  mpi_test.c 

❑               ^^^^^^^ 

❑Do not forget 

❑ Load the release_mt version of MPI_LIBRARY 
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