
it.auth| AUTH Information Technology Center

VI-SEEM Training | Paschalis Korosoglou (pkoro@it.auth.gr)VI-SEEM Training | Paschalis Korosoglou (pkoro@it.auth.gr)

Introduction to parallel
Computing

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Outline

• Serial vs Parallel programming

• Hardware trends

• Why HPC matters

• HPC Concepts and Terminology

• Amdahl’s Law and Scalability

• Parallel programming models

• Communications

• Synchronization

• Load Balancing

• Pseudo-code examples

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Serial vs Parallel Programming
• Traditionally software is written for

serial computation
– A problem is broken into discrete parts

– Parts (instructions) are executed each
at a time (serially)

• In parallel programming more than
one processors are used
– Problem is broken into discrete parts

that can be solved concurrently

– Several instructions are executed at a
given time asynchronously

– An overall control (syncing) mechanism
is needed

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

CPU trends

• We are not living in the 90s any
more…

“From 2007 to 2011, maximum
CPU clock speed (with Turbo
Mode enabled) rose from
2.93GHz to 3.9GHz, an increase
of 33%. From 1994 to 1998, CPU
clock speeds rose by 300%.”

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Hardware nowadays is designed for parallel computing

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Networks multiply nodes into HPC clusters

• Each node is a multi-processor computer

• Multiple nodes are networked together

• Special purpose nodes, also multi-processor, are used for
other purposes (i.e. GPU nodes, I/O nodes etc).

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Voila!

• Development of:
– Multi-core, multi-thread

CPUs

– Networks

– Distributed (I/O)
systems

– GPUs

• (+ Parallel programming)

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Why HPC matters

• Exact solutions are not always possible using current
theoretical tools and methods
– i.e. most problems we have to solve are non-linear

• Numerical integration and simulation technics are providing
answers to difficult problems

• The more complex the problem the more demanding the
solution will be. Hence, high end research requires
– better hardware

– improved software stacks etc

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

– “Yes, a new machine is on the way…” – Hardware specs

– “Try improving your code” – Software refactoring

– “Try linking with OpenBLAS or MKL” – Code re-use

Science will most likely impose the following..

IT will likely respond..

– “Is it possible to reduce the time it takes to solve the problem?”

– “Is it possible to increase the problem size?”

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Basic Concepts and terminology

• A Compute Node is a standalone computer
– It has multiple {CPU/Processor/Socket}s

• Each CPU has multiple Cores

– Each Core may support multiple threads

• A parallel program consists of multiple tasks
– Each task is a “serial” set of instructions

• Parallel tasks exchange data and

– Hence may need to be synchronized (i.e. before or after the
exchange takes place)

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Concepts and terminology

• Speedup is the wallclock of the serial version over the
wallclock of the parallel version

• Parallel overhead is the extra overhead (amount of time)
needed to build up the parallel execution environment

• Scalability is the ability of a given code to demonstrate
speedup with the addition of more resources.

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Amdahl’s Law
Amdahl’s law predicts
the theoretical
maximum speedup
when using multiple
processors

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

However, by
increasing the
problem size, the non-
parallel segment can
be reduced
 Problems that
increase the
percentage of parallel
time with their size
are more scalable
than problems with a
fixed percentage of
parallel time

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Scalability

• Strong scaling
– Problem size is fixed

– Goal is to solve faster

– Perfect scaling means speedup is ~P

• Weak scaling
– Problem size per processor is fixed

– Goal is to run a larger problem in the
same unit of time

– Perfect scaling means the larger
problem is solved in the same unit of
time

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

One final note…

• Parallel programming may overcome the issues but before
doing anything parallel make sure that:
– Your serial code is already optimized! Questions to ask

yourself:
• Are you using other people’s computational and I/O libraries?

• Have you tested with other compilers and, if yes, have you tried
various optimization flags?

• What does profiling tell you?

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Parallel programming models

Shared memory Distributed memory

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Parallel programming models

Shared memory Distributed memory
• Each thread shares the

same address space with
other threads

• Threads synchronization
is implicit

• Not scalable

• Each task has access to a
unique address space

• Access to another task’s
memory is not allowed

• Task synchronization is
explicit

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Parallel programming models

Shared memory Distributed memory
• Thread based

programming approach

• Compiler directives (i.e.
OpenMP)

• Message passing may also
be used (think hybrid)

• Easier (but trickier
sometimes) to implement

• Developer uses “Message
Passing” in order to sync
processes and share data
among them

• Message passing libraries

• MPI being the most
common

• Difficult to implement

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Hybrid Distributed-Shared memory

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Hybrid Distributed-Shared memory

• Most (all?) HPC systems currently employ both shared and
distributed memory architectures

• The distributed memory spawns over the network
(interconnect)

• The shared memory spawns within each node

• A common approach is for:
– Distributed memory schemes up to the CPU/Socket level

– Shared memory schemes within the CPU/Socket

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Designing parallel programs

• First step: Understand the problem
– Before beginning make sure the serial only version is already at

its best
• For example take advantage of optimized libraries such as

OpenBLAS or MKL

– Investigate if (and if yes, how) the program can be parallelized

• Profile the serial program’s runtime
– Where is time mostly being spent

• Focus on those parts

– Identify potential bottlenecks (i.e. I/O steps)

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Nature of the problem

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Nature of the problem (examples)
• Domain decomposition

• Functional partitioning

it.auth| AUTH Information Technology Center it.auth | AUTH Information Technology Center

Communications (domain decomposition)

• Rendering a 2D image • Explicit 2D scheme

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Communications Overhead
• Communications induce (inevitably) parallel overheads

– CPU Cycles are used to dispatch/receive data

– Points of synchronization need to be introduced

– Traffic may saturate the available network bandwidth

• Modes of communication
– Synchronous (or blocking)

– Asynchronous (or non-blocking)
• Used to overlap computation with communication in order not to

waste CPU Cycles

• Efficiency of communications depends mostly on
– MPI (or other protocol) Implementation being used

– Network fabric

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Synchronization types

• Barriers
– All tasks are involved

– All wait until the last (slowest) task reaches the barrier

• All synchronous communications
– Collective ones are hence implicitly barriers

• Locks
– May involve any number of parallel tasks

– Used to protect a code segment from being executed in
parallel (i.e. increments)

– Can be blocking or non-blocking

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Load balancing

• The practice of
– distributing approximately equal amount of work to all tasks

– Minimizing idle time

• The slowest (most loaded) task determines the overall
performance

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Common approaches

• Equally partition the work (whenever possible)

• But under circumstances this cannot be done beforehand
– For example: Sparse linear algebra, adaptive mesh refinement

and other use cases

– In such cases we use dynamic scheduling of small chunks of
workloads
• Each task picks up a workload and requests a new one upon

completion

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Example – 2D Array

• Calculation of array elements

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Example – 2D Array

• Calculation of array elements

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Example – Pi calculation

• Serial pseudo-code:

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Example – Pi calculation

• Modified pseudo-code:

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Example – 2D heat equation
• Calculation dependes upon neighboring

grid points

• Serial pseudo-code:

it.auth| AUTH Information Technology Center it.auth

VI-SEEM Training (December 2017)VI-SEEM Training (December 2017)

| AUTH Information Technology Center

Example – 2D heat equation
• Modified pseudo-code:

	Slide 1
	Outline
	Serial vs Parallel Programming
	CPU trends
	Hardware nowadays is designed for parallel computing
	Networks multiply nodes into HPC clusters
	Voila!
	Why HPC matters
	Slide 9
	Basic Concepts and terminology
	Concepts and terminology
	Amdahl’s Law
	Slide 13
	Scalability
	One final note…
	Parallel programming models
	Parallel programming models
	Parallel programming models
	Hybrid Distributed-Shared memory
	Hybrid Distributed-Shared memory
	Designing parallel programs
	Nature of the problem
	Nature of the problem (examples)
	Communications (domain decomposition)
	Communications Overhead
	Synchronization types
	Load balancing
	Common approaches
	Example – 2D Array
	Example – 2D Array
	Example – Pi calculation
	Example – Pi calculation
	Example – 2D heat equation
	Example – 2D heat equation

