AUTH Information Technology Center

0 Introduction to parallel
Computing

VI-SEEM Training | Paschalis Korosoglou (pkoro@it.auth.gr)

AUTH Information Technology Center

Outline

Serial vs Parallel programming
Hardware trends

Why HPC matters

HPC Concepts and Terminology
Amdahl’s Law and Scalability
Parallel programming models
Communications
Synchronization

Load Balancing

Pseudo-code examples

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Serial vs Parallel Programming

Traditionally software is written for

serial computation
— A problem is broken into discrete parts

ctions

. . —» processor
— Parts (instructions) are executed each “““““ || | | _l

2

at a time (serially)

In parallel programming more than
one processors are used

— Problem is broken into discrete parts
that can be solved concurrently

— Several instructions are executed at a
given time asynchronously

problem

N

instructions
3 2

"

—

!

—

!

processor I
processor I
processor I
processor I

— An overall control (syncing) mechanism
Is needed

VI-SEEM Training (December 2017)

AUTH Information Technology Center

CPU trends

10,000,000

‘ Dual-Core Iltanium 2 o
]

* We are not living in the 90s ang intel CPU Trends

More... (sources: Intel, Wikipedia, K. Olukotun})

100,000
Pentium 4

“From 2007 to 2011, maximum
CPU clock speed (with Turbo 10,000
Mode enabled) rose from

2.93GHz to 3.9GHz, an increase

of 33%. From 1994 to 1998, CPU ..
clock speeds rose by 300%.”

1,000

10

| Transistors (000)
@ Clock Speed (MHz)
e o0 A Power (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

VI-SEEM Training (December 2017)

|t AUTH Information Technology Center

Hardware nowadays is designed for parallel computing

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Networks multiply nodes into HPC clusters

* Each node is a multi-processor computer
* Multiple nodes are networked together

* Special purpose nodes, also multi-processor, are used for
other purposes (i.e. GPU nodes, I/0 nodes etc).

NODE NODE NODE NODE NODE NODE
memory memory memory memory memory memory
hJ Y pJ Y I I
core|core core |core core |core core |core core |core core |core
core |core core |core core |core core |core core |core core |core
NETWORK

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Development of:
Multi-core, multi-thread 100 Fiops

CPUs

Voila!

10 EFlop/s

1 EFlop/s

10 PFlop/s
— Networks i
— Distributed (1/0) : T
= 10 TFlop/s

systems .
1 TFlop/s
— GPUs 100 GFlop/s
(+ Parallel programming) 10 GFlops
1 GFlop/s
100 MFlop/s

Performance Development

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
Lists

® Sum A #1 s #300

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Why HPC matters

* Exact solutions are not always possible using current
theoretical tools and methods
— I.e. most problems we have to solve are non-linear
* Numerical integration and simulation technics are providing
answers to difficult problems
* The more complex the problem the more demanding the
solution will be. Hence, high end research requires

— better hardware
— Improved software stacks etc

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Science will most likely impose the following..

— “Is it possible to reduce the time it takes to solve the problem?”
— “Is it possible to increase the problem size?”

IT will likely respond..

— “Yes, a new machine is on the way...” - Hardware specs
— “Try improving your code” - Software refactoring
— “Try linking with OpenBLAS or MKL” - Code re-use

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Basic Concepts and terminology

* A Compute Node is a standalone computer

— It has multiple {CPU/Processor/Socket}s
* Each CPU has multiple Cores
— Each Core may support multiple threads

* A parallel program consists of multiple tasks

— Each task is a “serial” set of instructions
* Parallel tasks exchange data and

— Hence may need to be synchronized (i.e. before or after the
exchange takes place)

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Concepts and terminology

* Speedup is the wallclock of the serial version over the
wallclock of the parallel version

* Parallel overhead is the extra overhead (amount of time)
needed to build up the parallel execution environment

* Scalability is the ability of a given code to demonstrate
speedup with the addition of more resources.

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Speedup

Amdahl’'s Law

Amdahl’s Law

20.00 —
18.00 f;’f#f , .
/ Parallel Portion Amdahl S IaW predICtS
16.00 7 50% .
/ m— the theoretical
/ o maximum speedup
T when using multiple
]
— processors
6.00 ra
/
4.00 ﬁf/‘ —
____.--"
2.00 :i:
D'DD,_, ot oh] g = i ™ =r i] w [r 1] i
Mumber of Processors -
speedup
N P = .50 P = .90 P = .95 P = .99
10 1.82 5.26 6.89 9.17
100 1.98 9.17 16.80 50.25
1,000 1.99 9.91 19.62 90.99
10,000 1.99 9.91 19.96 99.02
100,000 1.99 9.99 19.99 99.90

VI-SEEM Training (December 2017)

AUTH Information Technology Center

T However, by
T increasing the
Ve arell Pt problem size, the non-
/l — 1% parallel segment can
/ — be reduced
/ —— s Problems that
S increase the
/4 percentage of parallel
ol AT time with their size
o T I B are more scalable
speedup
N P=.5 P=.90 P=.95 P=.99
10 1.82 5.26 6.89 9.17
100 1.98 9.17 16.80 50.25
10,000 1.99 9.91 19.96 99.02
100,000 1.99 9.99 19.99 99.90

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Scalability

* Strong scaling

— Problem size is fixed

— Goal is to solve faster

— Perfect scaling means speedup is ~P
* Weak scaling

— Problem size per processor is fixed

— Goal is to run a larger problem in the
same unit of time

— Perfect scaling means the larger
problem is solved in the same unit of
time

VI-SEEM Training (December 2017)

AUTH Information Technology Center

One final note...

Parallel programming may overcome the issues but before
doing anything parallel make sure that:

— Your serial code is already optimized! Questions to ask
yourself:
* Are you using other people’s computational and 1/0 libraries?

* Have you tested with other compilers and, if yes, have you tried
various optimization flags?

* What does profiling tell you?

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Parallel programming models

Shared memory Distributed memory

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Parallel programming models

Shared memory Distributed memory

* Each thread shares the .

same a space with
other t

Each task has access to a
unique address space

D dNOLl
Nemory FSWHST aQllo\WeC

hroni

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Parallel programming models

Shared memory Distributed memory

* Thread based * Developer uses “Message
progra pproach Passing” in order to sync
25 and

hem
network

* Me passi ibtarie

be used eing th

. . common
* Easier (buttrickier

sometimes) to implement * Difficult to implement

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Hybrid Distributed-Shared memory

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Hybrid Distributed-Shared memory

* Most (all?) HPC systems currently employ both shared and

dir‘l-lﬁ:lf\l I‘I-I'\I"I | a'a W a Nl oV W o W T\ W/ ‘\IFI"L\:"'I‘\""-I 1V~

* Th

(ir
* Th
° A

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Designing parallel programs

* First step: Understand the problem

— Before beginning make sure the serial only version is already at
its best

* For example take advantage of optimized libraries such as
OpenBLAS or MKL

— Investigate if (and if yes, how) the program can be parallelized

* Profile the serial program’s runtime

— Where is time mostly being spent
* Focus on those parts

— |ldentify potential bottlenecks (i.e. I/O steps)

VI-SEEM Training (December 2017)

AUTH Information Technology Center

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Nature of the problem (examples)

* Domain decomposition

Atmospheric model

* Functional partitioning

VI-SEEM Training

AUTH Information Technology Center

Communications (domain decomposition)

* Rendering a 2D image * Explicit 2D scheme

task 1

i~
ol
un
-
=
i~
ol
un
-
—

AUTH Information Technology Center

Communications Overhead

* Communications induce (inevitably) parallel overheads
— CPU Cycles are used to dispatch/receive data
— Points of synchronization need to be introduced
— Traffic may saturate the available network bandwidth

* Modes of communication
— Synchronous (or blocking)

— Asynchronous (or non-blocking)

* Used to overlap computation with communication in order not to
waste CPU Cycles

* Efficiency of communications depends mostly on
— MPI (or other protocol) Implementation being used
— Network fabric

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Synchronization types

* Barriers

— All tasks are involved

— All wait until the last (slowest) task reaches the barrier
* All synchronous communications

— Collective ones are hence implicitly barriers
* Locks

— May involve any number of parallel tasks

— Used to protect a code segment from being executed in
parallel (i.e. increments)

— Can be blocking or non-blocking

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Load balancing

* The practice of
— distributing approximately equal amount of work to all tasks
— Minimizing idle time

* The slowest (most loaded) task determines the overall
performance

task 0
task 1

task 2

task 4

work *
wait — time

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Common approaches

* Equally partition the work (whenever possible)

* But under circumstances this cannot be done beforehand

— For example: Sparse linear algebra, adaptive mesh refinement
and other use cases
— In such cases we use dynamic scheduling of small chunks of

workloads
* Each task picks up a workload and requests a new one upon
com pleﬁOn Scheduler - Task Pool

Application work queue

Task Pool

Request for new work m

Scheduler

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Example - 2D Array

* Calculation of array elements

ifen(i, j)

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Example - 2D Array

* Calculation of array elements

do j = mystart, myend
do i =1, n
a(i,j) = fen(i,3)
end do
end do task1 task2 ... task N

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Example - Pi calculation

* Serial pseudo-code:

npoints = 10000
circle count = 0

do j = 1,npoints
generate 2 random numbers between 0 and 1
xcoordinate = randoml
ycoordinate = random2
if (xcoordinate, ycoordinate) inside circle

then circle count = circle count + 1
end do
PI = 4.0*circle count/npoints

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Example - Pi calculation

* Modified pseudo-code:

npoints = 10000
circle count = 0

p = number of tasks
num = npoints/p

do j = 1,num
generate 2 random numbers between 0 and 1
xcoordinate = randoml
ycoordinate = random2
if (xcoordinate, ycoordinate) inside circle ?
then circle count = circle count + 1

end do

PI = 4.0*circle count/npoints

- Example - Pi ci

\'

Ac = (2r)?2 = 4r?
A = mr?

n =4 x-ﬁi

Ag

VI-SEEM Training (December 2017)

AUTH Information Technology Center

Example - 2D heat equation

* Calculation dependes upon neighboring
grid points

Ux_. y = Ux_. y

* Cx . (Ux+1_.y * Ux-‘l_.y -2° ny)

U

x,y-1 -2*U

+C.V.(U -\’.-.V)

x,y+1 +

* Serial pseudo-code:

U x,y+1
do iy = 2, ny - 1
do ix = 2, nx - 1
u2(ix, iy) = ul(ix, iy) +
cx * (ul(ix+1l,iy) + ul(ix-1,iy) - 2.*ul(ix,iy)) +| ¥
cy * (ul(ix,iy+1) + ul(ix,iy-1) - 2.*ul(ix,iy))
end do
end do U x,y-1

Ux1y | Uxy | Ux#ly

VI-SEEM Training (December 2017) X -

AUTH Information Technology Center

Example - 2D heat equation
* Modified pseudo-code:

find out if I am MASTER or WORKER

if I am MASTER
initialize array
send each WORKER starting info and subarray
receive results from each WORKER

else if I am WORKER
receive from MASTER starting info and subarray

Perform time steps
do t = 1, nsteps
update time
send neighbors my border info
receive from neighbors their border info
update my portion of solution array

end do

send MASTER results

endif

VI-SEEM Training (December 2017)

	Slide 1
	Outline
	Serial vs Parallel Programming
	CPU trends
	Hardware nowadays is designed for parallel computing
	Networks multiply nodes into HPC clusters
	Voila!
	Why HPC matters
	Slide 9
	Basic Concepts and terminology
	Concepts and terminology
	Amdahl’s Law
	Slide 13
	Scalability
	One final note…
	Parallel programming models
	Parallel programming models
	Parallel programming models
	Hybrid Distributed-Shared memory
	Hybrid Distributed-Shared memory
	Designing parallel programs
	Nature of the problem
	Nature of the problem (examples)
	Communications (domain decomposition)
	Communications Overhead
	Synchronization types
	Load balancing
	Common approaches
	Example – 2D Array
	Example – 2D Array
	Example – Pi calculation
	Example – Pi calculation
	Example – 2D heat equation
	Example – 2D heat equation

