
VRE for regional Interdisciplinary
communities in Southeast Europe and

the Eastern Mediterranean

The VI-SEEM project initiative is co-funded by the European Commission under the H2020 Research Infrastructures contract no. 675121

Parallel programming with GPGPU
coprocessors

Petar Jovanović
Institute of Physics Belgrade

VI-SEEM REG CL, 11-13 Oct 2017 2

Agenda

❑ Introduction
❑ The von Neumann architecture
❑ CPU vs GPU architecture
❑ Heterogeneous execution model
❑ Code for GPUs
❑ CUDA kernel example
❑ GPU memory organization
❑ Matrix multiplication example

VI-SEEM REG CL, 11-13 Oct 2017 2

Introduction

❑ With the introduction of CUDA, graphical processing units (GPUs)
became usable for general purpose computation.

❑ For some types of work GPU can bring significant speedup over
traditional CPU.

VI-SEEM REG CL, 11-13 Oct 2017 2

The von Neumann architecture

VI-SEEM REG CL, 11-13 Oct 2017 2

CPU vs GPU architecture

CPU (latency oriented design):
Large caches
Sophisticated control
Powerful ALU

GPU (throughput oriented design):
Small caches
Simple control
Energy efficient ALUs
Latencies compensated by
large number of threads

VI-SEEM REG CL, 11-13 Oct 2017 2

Heterogeneous execution model

❑ Host — a CPU which executes the main program in serial.
❑ Device — a GPU which executes parallel portions of the code.
❑ Memory spaces are separate*

❑ Allocation and data movement is the responsibility of the
programmer.

Serial code

Kernel invocation

More serial code

CUDA threads

VI-SEEM REG CL, 11-13 Oct 2017 2

Code for GPUs

❑ CUDA C program is written as follows:
❑ Serial parts in host C code
❑ Parallel parts in device SIMD kernel C code

❑ Source code is compiled separately
❑ Standard C/C++ code for the CPU
❑ Device code in PTX – compiled just-in-time for the exact device

❑ Use the nvcc for compilation
❑ PTX is an assembly format
❑ Specific binary code for the GPU devices

VI-SEEM REG CL, 11-13 Oct 2017 2

CUDA kernel example

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 ...
 // Kernel invocation with N threads
 VecAdd<<<1, N>>>(A, B, C);
 ...
}

VI-SEEM REG CL, 11-13 Oct 2017 2

GPU memory organization (1)

❑ Registers (local memory) are per-thread
❑ very low latency, very high throughput
❑ limited resource, used for automatic variables

❑ Shared memory (and L1 cache) is per-block
❑ low latency, high throughput
❑ can yield significant performance boost, depends on algorithm
❑ programmer is responsible for its usage
❑ shared/cache split can be controlled using the API

❑ Global memory is visible to all threads
❑ high latency, moderate throughput
❑ memory allocated with cudaMalloc is global
❑ has the highest capacity

VI-SEEM REG CL, 11-13 Oct 2017 2

GPU memory organization (2)

VI-SEEM REG CL, 11-13 Oct 2017 2

Matrix multiplication example

❑ Simple version:  
__global__  
void matrixMulKernel(float* A, float* B, float* C, int width)
{  
 int i;  
 int row = blockIdx.y*blockDim.y+threadIdx.y;  
 int col = blockIdx.x*blockDim.x+threadIdx.x;  
 
 if ((row<width) && (col<width)) {  
 float tmp = 0;  
 for (i = 0; i < width; ++i)  
 tmp += A[row*width+i]*B[i*width+col];  
 C[row*width+col] = tmp;  
 }  
}

VI-SEEM REG CL, 11-13 Oct 2017 2

Matrix multiplication w/ shared memory

#define TILE_WIDTH 32

__global__
void matrixMulKernel(float* A, float* B, float* C, int width) {
 __shared__ float sA[TILE_WIDTH][TILE_WIDTH];
 __shared__ float sB[TILE_WIDTH][TILE_WIDTH];

 int bx=blockIdx.x, by=blockIdx.y;
 int tx=threadIdx.x, ty=threadIdx.y;
 int row = by*TILE_WIDTH+ty;
 int col = bx*TILE_WIDTH+tx;
 float tmp = 0;

 for (int i = 0; i < width/TILE_WIDTH; ++i) {
 sA[ty][tx] = A[row*width+i*TILE_WIDTH+tx];
 sB[ty][tx] = B[(i*TILE_WIDTH+ty)*width+col];
 __syncthreads();
 for (int j = 0; j < TILE_WIDTH; ++j) {
 tmp += sA[ty][j]*sB[j][tx];
 }
 __syncthreads();
 }
 C[row*width+col] = tmp;
}

VI-SEEM REG CL, 11-13 Oct 2017 2

Questions

Thank you for your attention.

