
VRE for regional Interdisciplinary
communities in Southeast Europe and

the Eastern Mediterranean

Parallel programming with

OpenMP and MPI

Vladimir Lončar

Institute of Physics Belgrade

The VI-SEEM project initiative is co-funded by the European Commission under the H2020 Research Infrastructures contract no. 675121

Agenda

� OpenMP

� Introduction & “Hello World”

� Parallel regions, loop parallelization

� Work sharing constructs

� Data scopes

� Synchronization

� MPI

� Introduction & “Hello World”

� Point-to-point & collective communication

� One-sided communication

� I/O

� Hybrid OpenMP/MPI

VI-SEEM REG CL, 11-13 Oct 2017 2

Memory models

Shared memory

� Programmed with OpenMP (or MPI)

Distributed memory

� Programmed with MPI

VI-SEEM REG CL, 11-13 Oct 2017 3

Memory

CPU

CPU

CPU

CPU

CPU(s) Memory

MemoryCPU(s)

CPU(s) Memory

MemoryCPU(s)

Network

Introduction to OpenMP

� Application programming interface (API) for parallel programming on
shared memory multiprocessors

� Usually cores of a multicore CPU(s)

� Components of OpenMP

� Compiler directives (pragmas)

� Library functions

� Environmental variables

� Supports multiple programming languages

� Fortran, C, and C++

� We will use C in examples

� Provides portable programming model

� Significantly simplifies programming with threads

VI-SEEM REG CL, 11-13 Oct 2017 4

Fork–Join model

� OpenMP uses fork–join model

� Master thread executes sequential code

� Fork – Master thread creates/awakens additional threads to execute parallel code

� Join – At end of parallel code created threads die or are suspended

VI-SEEM REG CL, 11-13 Oct 2017 5

Thread 1

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

Thread 1

Thread 2

Thread 3

master
thread

parallel region

parallel region
parallel region

Directives

� A way for the programmer to communicate with the compiler

� Compiler free to ignore directives (they are hints)

� OpenMP directives

� Case sensitive

� End with newline

� Applied to one succeeding statement (structured block)

VI-SEEM REG CL, 11-13 Oct 2017 6

#pragma omp directive-name [clause, ...]

{

// code

}

Parallel regions

� Constructed using parallel pragma

� Block with parallel pragma is called parallel region

� All threads execute the same segment of code, in parallel

� Example:
#pragma omp parallel

{

// this is executed by a team of threads in parallel

}

� How to identify each individual thread inside a parallel block?
#pragma omp parallel

{

int t = omp_get_thread_num();

printf("Hello world from %d!\n", t);

}

VI-SEEM REG CL, 11-13 Oct 2017 7

Hello OpenMP World!

#include <omp.h>

#include <stdio.h>

int main (int argc, char **argv) {

#pragma omp parallel

{

int tid = omp_get_thread_num();

int nth = omp_get_num_threads();

printf("Hello World from thread = %d of %d\n",tid,nth);

}

return 0;

}

VI-SEEM REG CL, 11-13 Oct 2017 8

Compiling OpenMP programs

� Requires compiler support

� Most modern compilers support OpenMP

� GNU (gcc), LLVM (clang), Intel (icc), Portland (pgcc), IBM (xlc), Oracle (suncc),

Microsoft (cl.exe) and many more

� GCC:
gcc -fopenmp hello_omp.c –o hello_omp

� Intel:
icc -qopenmp hello_omp.c –o hello_omp

� Intel (older versions):
icc -openmp hello_omp.c –o hello_omp

VI-SEEM REG CL, 11-13 Oct 2017 9

Loop parallelism

� Use parallel for pragma:

VI-SEEM REG CL, 11-13 Oct 2017 10

#pragma omp parallel

{

#pragma omp for

for (i=1; i<=4*N; i++) {

// …

}

}

#pragma omp parallel for

for (i=1; i<=4*N; i++) {

// …

}

� OpenMP can only handle for loops, while loops can’t be parallelized

Execution of parallel region

#pragma omp parallel

{

code1();

#pragma omp for

for (i=1; i<=4*N; i++) {

code2();

}

code3();

}

code1 code1 code1 code1

code3 code3 code3 code3

1:n n+1:2n 2n+1:3n 3n+1:4n

VI-SEEM REG CL, 11-13 Oct 2017 11

Loop scheduling

� Specified with the schedule(kind[,chunk]) clause, where kind is

� static – Divide the loop into equal-sized chunks or as equal as possible

� Good if all iterations take the same amount of time

� dynamic – Use work queue to assign iterations to unoccupied threads

� Better than static if iterations do not take the same amount of time

� guided – Uses decreasing chunk size

VI-SEEM REG CL, 11-13 Oct 2017 12

Thread 1 Thread 2 Thread 3 Thread 4

1 n-1Static

Iteration number

T1 T2 T3 T4

1 n-1Dynamic

T1 T2 T3 T4 T1

T1 T2 T3 T4

1 n-1Guided

T1 T2 T3 T4T1 T2T3 T4

T2

More loop scheduling

� Other scheduling options:

� auto – The schedule choice is left up to the compiler

� runtime - Use the value of the OMP_SCHEDULE environment variable

� Optional chunk parameter controls the size of blocks

� Increasing the chunk size makes the scheduling more static, and decreasing it

makes it more dynamic

VI-SEEM REG CL, 11-13 Oct 2017 13

Sections

� Useful for independent, separate calculations

� Specified using sections and section directives

� section directives are nested within a sections directive

� Each section is executed once by a thread in the team

VI-SEEM REG CL, 11-13 Oct 2017 14

#pragma omp sections

{

#pragma omp section

// one calculation

#pragma omp section

// another calculation

}

Single/Master

� Only one thread executes code enclosed with the single directive

� Implicit barrier at the end

� master directive is similar

� Does not have a barrier at the end

VI-SEEM REG CL, 11-13 Oct 2017 15

#pragma omp parallel

{

code1(); // Executed by every thread

#pragma omp single

{

x = code2(); // A single thread executes this code

}

code3(x); // x has correct value here

}

Data scope

� By default, data declared outside a parallel region is shared, while data
declared in the parallel region is private

� Scope can be explicitly defined using attribute clauses:

� private – declares variables in its list to be private to each thread

� shared – declares variables in its list to be shared among all threads in the team

� default – allows the user to specify a default scope for all variables

� firstprivate – initializes the variable to the value of their original objects

� lastprivate – copies the value obtained from the sequentially last iteration (or

section) back into the original variable object

� reduction – performs a reduction operation on the variables in its list (+, *, min,

max, bitwise, user-defined)

� threadprivate – used for making thread data persistent

� …

VI-SEEM REG CL, 11-13 Oct 2017 16

Data scope example

int i, n;

float a[100], b[100], result;

n = 100; result = 0.0;

for (i = 0; i < n; i++) {

a[i] = i * 1.0; b[i] = i * 2.0;

}

#pragma omp parallel for default(none) \

shared(n,a,b) private(i) reduction(+:result)

for (i = 0; i < n; i++) {

result = result + (a[i] * b[i]);

}

printf("Final result = %f\n", result);

VI-SEEM REG CL, 11-13 Oct 2017 17

Synchronization

� OpenMP provides a variety of synchronization constructs that control
the execution of each thread relative to other threads in the team:

� Barriers

� Locks

� Critical sections

� Atomic operations

� Ordered execution

� flush and nowait directives

VI-SEEM REG CL, 11-13 Oct 2017 18

Barriers and nowait

� Every work share construct has an implicit barrier

� Explicit barrier is defined with barrier construct

VI-SEEM REG CL, 11-13 Oct 2017 19

#pragma omp parallel

{

x = code();

#pragma omp barrier

// Can safely use x after barrier

}

� Implicit barrier can be removed with nowait clause

#pragma omp for nowait

for (i = 0; i < 100; i++) {

...

}

Critical sections and atomic operations

� The critical directive specifies a region of code that must be
executed by only one thread at a time

� Atomic operations are limited to single memory locations, but are
possibly faster due to hardware support

VI-SEEM REG CL, 11-13 Oct 2017 20

#pragma omp parallel

{

x = code();

#pragma omp critical

do_something(x);

}

a[i] += x; // Can be interrupted half-complete

#pragma omp atomic

b[i] += x; // Never interrupted because defined as atomic

Example

� Steady state heat equation (heat_omp.c)

� Given boundary conditions

� Interior point formula

�� �	
�� � �� � �� � �	

4

� Repeat until convergence of estimates

� Adapted from J. Burkardt’s code

� OpenMP concepts used:

� Parallel regions

� Shared and private variables

� Reduction

� Single construct

� Compile: make

VI-SEEM REG CL, 11-13 Oct 2017 21

W = 100 W = 100

W = 100

W = 0

[0,0]

[M-1,0]

[0,N-1]

[M-1,N-1]

i = 0

i = M-1

j = 0 j = N-1

W E

N

S

More OpenMP topics

� This was just a short introduction, OpenMP provides much more

� More data scope attributes

� More synchronization constructs

� Nested parallelism & collapsing nested loops

� Tasks

� SIMD support

� Offloading (since OpenMP 4.0)

� Runtime tuning (affinity, binding…)

VI-SEEM REG CL, 11-13 Oct 2017 22

MPI

� Message Passing Model

� Parallel programs consist of cooperating processes, each with its own memory

� Processes send data to one another as messages

� Message Passing Interface (MPI)

� Standardized message passing model

� Just a standard, not an implementation

� Multiple implementations exist, e.g., Open MPI, MPICH, vendor implementations

� Reasons for using MPI

� Standardized & portable

� Rich functionality

� Many high-performance implementations

VI-SEEM REG CL, 11-13 Oct 2017 23

What MPI provides?

� A plethora of communications functions

� Point-to-point communication routines

� Collective operations

� Remote-memory access

� Blocking & non-blocking communication

� Process groups and hierarchies

� Datatypes

� Basic & derived (user-defined) datatypes

� I/O operations

� 300+ functions in total

VI-SEEM REG CL, 11-13 Oct 2017 24

MPI basics

� MPI processes are collected into groups (communicators)

� The group of all processes is initially given a predefined name called

MPI_COMM_WORLD

� A process is identified by a unique number within each communicator,
called rank
� MPI_Comm_rank(), MPI_Comm_size()

� MPI environment has to be initialized at program start, and finalized
before program ends
� MPI_Init(), MPI_Finalize()

� MPI functions are defined in mpi.h header file

VI-SEEM REG CL, 11-13 Oct 2017 25

Hello MPI World!

#include "mpi.h"

#include <stdio.h>

int main(int argc, char **argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("Hello MPI World from process %d of %d\n",rank,size);

MPI_Finalize();

return 0;

}

VI-SEEM REG CL, 11-13 Oct 2017 26

Compile & run

� Use mpicc compiler

� Wrapper around host C/C++/Fortran compiler

mpicc hello_mpi.c -o hello_mpi

� Run with mpiexec

� Specify number of processes and their placement

� Pass additional arguments to MPI runtime

mpiexec –np 4 ./hello_mpi

� Output:
Hello MPI World from process 0 of 4

Hello MPI World from process 1 of 4

Hello MPI World from process 2 of 4

Hello MPI World from process 3 of 4

� Note that the order of printf statements may vary if processes share
the output stream

VI-SEEM REG CL, 11-13 Oct 2017 27

Error handling

� MPI routines return an integer error code

� In C, it is the function result

� In Fortran, it is the parameter of the MPI function

� By default, an error causes all processes to abort

� User can associate an error handler with a communicator

� Useful for libraries, not so much in scientific computation

� Hard to recover from errors in parallel programs

VI-SEEM REG CL, 11-13 Oct 2017 28

Basic communication operations

� No messages have been exchanged in previous example

� Data is explicitly sent by one process and received by another

� Sender calls MPI_Send() specifying:

� Whom to send (the rank of receiving process)

� What to send (amount and type of data)

� Optional user-defined tag (arbitrary integer)

� Receiver calls MPI_Recv() specifying:

� Where the message will come from (rank of sending process)

� What to receive (amount and type of data)

� Optional user-defined tag (arbitrary integer)

� Optional status object, populated with additional information about the receive

operation after it completes

VI-SEEM REG CL, 11-13 Oct 2017 29

Send/Receive example

#include <mpi.h>

int main(int argc, char ** argv) {

int rank, data[100];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0)

MPI_Send(data, 100, MPI_INT, 1, 0, MPI_COMM_WORLD);

else if (rank == 1)

MPI_Recv(data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

MPI_Finalize(); return 0;

}

VI-SEEM REG CL, 11-13 Oct 2017 30

Blocking communication

� MPI_Send/MPI_Recv are blocking communication calls

� Return of the routine implies completion

� Blocking communication is simple to use but can be prone to deadlocks

� Completion implies variable sent/received can be reused/read

VI-SEEM REG CL, 11-13 Oct 2017 31

if (rank == 0) {

MPI_Send(...)

MPI_Recv(...)

} else { // Can deadlock here you reverse Send/Recv

MPI_Send(...)

MPI_Recv(...)

}

Non-blocking communication

� MPI_Isend/MPI_Irecv are non-blocking variants

� Returns immediately, we have to test for completion separately

� Allows overlapping computation and communication

� Semantics:
MPI_ISend(start, count, datatype, dest, tag, comm, request)

MPI_Irecv(start, count, datatype, src, tag, comm, request)

MPI_Wait(request, status)

� All instances of MPI_Send/MPI_recv can be replaced with pars
MPI_Isend/MPI_Wait and MPI_Irecv/MPI_Wait

� Blocking and non-blocking sends/receives can be combined

� Use as a synchronization mechanism instead of barriers

� In case we need processes to exchange data, we can also use
MPI_Sendrecv() instead of non-blocking operations

VI-SEEM REG CL, 11-13 Oct 2017 32

Collective operations

� Collective operations are called by all processes in a communicator

� Most common:

� MPI_Bcast() – Broadcast (one to all)

� MPI_Reduce() – Reduction (all to one)

� MPI_Scatter() – Distribute data (one to all)

� MPI_Gather() – Collect data (all to one)

� MPI_Alltoall() – Distribute data (all to all)

� Many more
� MPI_Allgather, MPI_Allgatherv, MPI_Allreduce, MPI_Scan,

MPI_Alltoallv, MPI_Scatterv, MPI_Gatherv, MPI_Reducescatter

� Even more in MPI-3

� Non-blocking collective operations

� Synchronization is also collective – MPI_Barrier()

VI-SEEM REG CL, 11-13 Oct 2017 33

Illustration of collective operations

AP1

P2

P3

P4

A

A

A

A

Broadcast

AP1

P2

P3

P4

B C D A

B

C

D

Scatter

Gather

A1P1

P2

P3

P4

B1

C1

D1

A2 A3 A4

B2 B3 B4

C2 C3 C4

D2 D3 D4

A1

A2

A3

A4

B1 C1 D1

B2 C2 D2

B3 C3 D3

B4 C4 D4

Alltoall

AP1

P2

P3

P4

B

C

D

ABCD

Reduce

VI-SEEM REG CL, 11-13 Oct 2017 34

Datatypes

� MPI defines numerous basic datatypes, corresponding to built-in
language datatypes

� MPI_INT, MPI_LONG, MPI_FLOAT, MPI_DOUBLE, MPI_BYTE, MPI_CHAR…

� Used as building blocks for derived datatypes

� Contiguous array of MPI datatypes (MPI_Type_contiguous)

� Strided block of datatypes (MPI_Type_vector)

� Indexed array of blocks of datatypes (MPI_Type_indexed)

� Arbitrary structure of datatypes (MPI_Type_struct)

� Derived types must be committed before use
� MPI_Type_commit()

VI-SEEM REG CL, 11-13 Oct 2017 35

MPI input and output operations

� Multiple processes may write to separate files

� Have to combine them manually later

� Difficult to coordinate reading/writing from/to a single file

� MPI I/O eases this

� Single file pointer

� Collective operations

� Processes access relevant portion of data based on offset into the file

� Familiar semantics (open, read/write, close)

� Open/Close: MPI_File_open(), MPI_File_close()

� Read/Write: MPI_File_read(), MPI_File_read_at(),
MPI_File_write(), MPI_File_write_at()

� Binary format is preferable

� Works great in combination with MPI derived datatypes
VI-SEEM REG CL, 11-13 Oct 2017 36

Example

� Steady state heat equation (heat_mpi.c)

� Slab decomposition (over M)

� Processes have to exchange data with neighbors

� MPI concepts used:

� Initialization and finalization

� Ghost nodes

� Reduction (MPI_Allreduce)

� Data exchanges (MPI_Sendrecv)

� MPI I/O

VI-SEEM REG CL, 11-13 Oct 2017 37

M

N

One-sided communication

� Motivation:

� In point-to-point communication, sender has to wait for the receiver to be ready

to receive the data before it can send the data, causing delay in sending

� Very expensive operation in blocking mode

� Idea:

� Decouple data movement with process synchronization

� Require only one process for data movement

VI-SEEM REG CL, 11-13 Oct 2017 38

P1 P2

MPI_Send

MPI_Recv

W
a
it
in

g
 f
o
r

c
o
m

p
le

ti
o
n

P
re

p
a
ri
n
g
 b

u
f
fe
r

Remote Memory Access

� One-sided communication functions provide an interface to Remote
Memory Access (RMA) communication methods

� Each process exposes a part of its memory to other processes

� Other processes can directly read from or write to this memory

� Many potential advantages:

� Significantly faster than send/receive on systems with hardware support for RMA

(think shared memory systems)

� Irregular communication patterns can be more economically expressed

� Dynamic communication pattern easier to code

VI-SEEM REG CL, 11-13 Oct 2017 39

One-sided communication concepts

� Window:

� Each processor can make an area of memory available to one-sided transfers

� MPI_Win_create() – Expose local memory to RMA operation

� MPI_Win_free() – Deallocate window object

� Main functions:

� MPI_Put() – Move data from local memory (origin) to remote memory (target)

� MPI_Get() – Retrieve data from target memory into origin’s memory

� MPI_Accumulate() – Update target memory using local values

VI-SEEM REG CL, 11-13 Oct 2017 40

Origin Target

MPI_Put

Origin Target Origin Target

+=

MPI_Get MPI_Accumulate

Remotely
accessible
memory

Private
memory

Synchronization in one-sided operations

� Data movement operations are non-blocking!

� Subsequent synchronization on window object needed to ensure
operation is complete

� Data accesses occur within epochs

� Epochs define ordering and completion semantics

� Synchronization models provide mechanisms for establishing (i.e., starting and

ending) epochs

� Active synchronization

� Both origin and target participate in synchronization (declare an epoch)

� Passive synchronization

� Only the origin is actively involved

VI-SEEM REG CL, 11-13 Oct 2017 41

Active synchronization

� Fence – MPI_Win_fence()

� Collective synchronization model

� Similar to MPI_Wait(), uses global synchronization

� Starts and ends access and exposure epochs on all processes in the window

� Post-start-complete-wait – MPI_Win_start(), MPI_Win_complete(),

MPI_Win_post(), MPI_Win_wait()

� Finer-grained than fence, origin and target specify who they communicate with

VI-SEEM REG CL, 11-13 Oct 2017 42

P1 P2 P3

Fence

Fence

Origin Target

Start

Complete

Post

Wait

Passive synchronization

� Only the origin process is involved in the communication

� Communication paradigm closer to shared memory model

� Lock/Unlock

� Origin process remotely locks/unlocks the window on the target

� Shared and exclusive lock types (MPI_LOCK_SHARED, MPI_LOCK_EXCLUSIVE)

VI-SEEM REG CL, 11-13 Oct 2017 43

if (rank == 0) {

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 1, 0, win);

MPI_Put(outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win);

MPI_Win_unlock(1, win);

}

Example

� Steady state heat equation (heat_rma.c)

� Use only RMA functions

� Window creation

� Get/Put

� Accumulate

� Fences

� Better or worse than message passing?

� Easier to access remote data

� Accumulation is more complex than simple MPI_Reduce()

VI-SEEM REG CL, 11-13 Oct 2017 44

Hybrid programming

� Combining OpenMP and MPI within a single application

� Why hybrid?

� Easier load balancing (with some algorithms)

� Lower (memory) latency and data movement within node

� Why not?

� May not always be better than pure OpenMP or MPI solution

� Modes of OpenMP/MPI operation

� One MPI process per node

� OpenMP threads share entire node memory, e.g., 16 threads/node on PARADOX IV

� One MPI process per socket

� OpenMP thread set shares socket memory, e.g., 8 threads/socket on PARADOX IV

VI-SEEM REG CL, 11-13 Oct 2017 45

Thread safety in (hybrid) MPI programs

� Thread safety in varies in MPI implementations

� Controlled with MPI_Init_thread()

� MPI_THREAD_SINGLE – Only one thread will run (same as MPI_Init)

� MPI_THREAD_FUNNELED – Processes may be multithreaded, but only the main

thread can make MPI calls (MPI calls are delegated to main thread)

� MPI_THREAD_SERIALIZED – Processes could be multithreaded and more than

one thread can make MPI calls, but only one at a time

� MPI_THREAD_MULTIPLE – Multiple threads can make MPI calls, with no

restrictions

VI-SEEM REG CL, 11-13 Oct 2017 46

Example

� Steady state heat equation (heat_hyb.c)

� Combination of MPI and OpenMP

� Uses concepts presented in heat_omp.c and heat_mpi.c

� Run with single process per node
� mpiexec -np 4 –npernode 1 –bind-to-none ./heat_hyb ...

� Not necessarily better performance than pure OpenMP or MPI versions

VI-SEEM REG CL, 11-13 Oct 2017 47

Summary

� Parallelism is the only way to achieve performance improvement with
the modern hardware

� OpenMP provides for a simple, but powerful, programming model for
shared memory programming

� Fork/join model

� Directive-based

� Data parallelism

� MPI is the dominant model used in high-performance computing today

� Based on message passing model…

� …but also supports RMA-style programming

� Industry standard with multiple high-quality implementations

� OpenMP and MPI can be combined into a hybrid programming model

� Basic concepts covered, much more left to explore

VI-SEEM REG CL, 11-13 Oct 2017 48

Additional resources

� OpenMP

� LLNL OpenMP tutorial: https://computing.llnl.gov/tutorials/openMP/

� B. Chapman et al., “Using OpenMP”, MIT Press, 2007.

� Victor Eijkhout’s tutorial: http://pages.tacc.utexas.edu/~eijkhout/pcse/html/

� MPI

� LLNL MPI tutorial: https://computing.llnl.gov/tutorials/mpi/

� W. Gropp et al., “Using MPI”, MIT Press, 2014.

� W. Gropp et al., “Using Advanced MPI”, MIT Press, 2014.

� Code examples

� John Burkardt’s OpenMP and MPI examples

� https://people.sc.fsu.edu/~jburkardt/c_src/openmp/openmp.html

� https://people.sc.fsu.edu/~jburkardt/c_src/mpi/mpi.html

� http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/

VI-SEEM REG CL, 11-13 Oct 2017 49

