VRE for regional Interdisciplinary
communities in Southeast Europe and
the Eastern Mediterranean

Parallel programming with Vi-SEEM
OpenMP and MPI

Vladimir Loncar
Institute of Physics Belgrade

The VI-SEEM project initiative is co-funded by the European Commission under the H2020 Research Infrastructures contract no. 675121

g

Vi-SEEM

d OpenMP
Introduction & “Hello World”

Q
O Parallel regions, loop parallelization
A Work sharing constructs
O Data scopes
O Synchronization
a MPI
Q Introduction & “Hello World”
Q Point-to-point & collective communication
A One-sided communication
a 1/0
2 Hybrid OpenMP/MPI

VI-SEEM REG CL, 11-13 Oct 2017 2

Memory models @y

Vi-SEEM
Shared memory Distributed memory
Q Programmed with OpenMP (or MPI) Q Programmed with MPI
Memory Memory
F Memory 4. < Network >
Memory Memory

VI-SEEM REG CL, 11-13 Oct 2017 3

Introduction to OpenMP ¥

Vi-SEEM

Q Application programming interface (API) for parallel programming on
shared memory multiprocessors

Q Usually cores of a multicore CPU(s)
Q Components of OpenMP
Q Compiler directives (pragmas)
Q Library functions
Q Environmental variables
Q Supports multiple programming languages
a Fortran, C, and C++

O We will use Cin examples
Q Provides portable programming model

a Significantly simplifies programming with threads

VI-SEEM REG CL, 11-13 Oct 2017 4

Fork—Join model 8

Vi-SEEM

3 OpenMP uses fork—join model

Q Master thread executes sequential code

0 Fork — Master thread creates/awakens additional threads to execute parallel code
Q Join — At end of parallel code created threads die or are suspended

parallel region

master | | parallel region

thread | Thread1 | parallel region L PR |

~ N
~§ - S
|
| //// N : ///
e i P
-7 ’ ~ gl
L ! |
/ | |
I, | |
I3 | |
a |
I
|
|

Thread 3

VI-SEEM REG CL, 11-13 Oct 2017)

g

Vi-SEEM

a A way for the programmer to communicate with the compiler
Q Compiler free to ignore directives (they are hints)

aQ OpenMP directives
O Case sensitive

O End with newline
O Applied to one succeeding statement (structured block)

#fpragma omp directive—name [clause, ...]
{

// code
}

VI-SEEM REG CL, 11-13 Oct 2017 6

Parallel regions v

Vi-SEEM

Constructed using parallel pragma
Block with parallel pragmais called parallel region
All threads execute the same segment of code, in parallel

Example:
#fpragma omp parallel
{

// this is executed by a team of threads in parallel

}

aQ How to identify each individual thread inside a parallel block?
#pragma omp parallel
{

U 0O 0O O

int t = omp_get_thread _num();
printf ("Hello world from %d!\n", t);
}

VI-SEEM REG CL, 11-13 Oct 2017 7

Hello OpenMP World! @y

Vi-SEEM

#include <omp.h>
#include <stdio.h>

int main (int argc, char **argv) {
#fpragma omp parallel
{
int tid = omp_get_thread_num() ;
int nth = omp_get_num threads();
printf ("Hello World from thread = %d of %d\n",tid,nth);

return O;

VI-SEEM REG CL, 11-13 Oct 2017 8

Compiling OpenMP programs ¥

Vi-SEEM

Q Requires compiler support

O Most modern compilers support OpenMP

O GNU (gcc), LLVM (clang), Intel (icc), Portland (pgcc), IBM (x1c), Oracle (suncc),
Microsoft (c1.exe) and many more

a GCC:

gcc —fopenmp hello_omp.c —o hello_omp

a Intel:

icc —gopenmp hello_omp.c —-o hello_omp

Q Intel (older versions):

icc —openmp hello_omp.c —-o hello_omp

VI-SEEM REG CL, 11-13 Oct 2017 9

Loop parallelism @Y

Vi-SEEM
O Useparallel for pragma:
#fpragma omp parallel
{ #fpragma omp parallel for
#fpragma omp for for (i=1; i<=4*N; i++) {

for (i=1; 1i<=4*N; 1i++) { ‘ // ..
/] .. }

Q OpenMP can only handle for loops, while loops can’t be parallelized

VI-SEEM REG CL, 11-13 Oct 2017 10

Execution of parallel region 4

Vi-SEEM

#fpragma omp parallel
{

:

codel () ; codel
#pragma omp for ¢
for (i=1; i<=4*N; i++) {

code2 () ; 2n+1:3n
} v
code3 () ; code3

VI-SEEM REG CL, 11-13 Oct 2017 11

Loop scheduling @y

Vi-SEEM

Q Specified with the schedule (kind[, chunk]) clause, where kind is
O static —Divide the loop into equal-sized chunks or as equal as possible
O Good if all iterations take the same amount of time
O dynamic — Use work queue to assign iterations to unoccupied threads
O Better than static if iterations do not take the same amount of time

O guided — Uses decreasing chunk size

1 Static iy
| Thread1 [NMNTHrEZGENN | Threads | [NTHreaGANN
Dynamic
o o N N T e
Guided
T) I 7

>

Iteration number

VI-SEEM REG CL, 11-13 Oct 2017 12

More loop scheduling ¥

Vi-SEEM

A Other scheduling options:
O auto —The schedule choice is left up to the compiler

O runtime - Use the value of the OMP_SCHEDULE environment variable

a Optional chunk parameter controls the size of blocks

Q Increasing the chunk size makes the scheduling more static, and decreasing it
makes it more dynamic

VI-SEEM REG CL, 11-13 Oct 2017 13

g

Vi-SEEM

Q Useful for independent, separate calculations
Q Specified using sections and section directives

O section directives are nested within a sections directive

O Each section is executed once by a thread in the team

#pragma omp sections
{
#pragma omp section

// one calculation

#pragma omp section

// another calculation

VI-SEEM REG CL, 11-13 Oct 2017 14

Single/Master B4

Vi-SEEM

a Only one thread executes code enclosed with the single directive
Q Implicit barrier at the end
0 master directive is similar

O Does not have a barrier at the end

#pragma omp parallel

{
codel (); // Executed by every thread

#fpragma omp single
{

x = code2(); // A single thread executes this code

}

code3(x); // x has correct wvalue here

}

VI-SEEM REG CL, 11-13 Oct 2017 ()

Data scope @Y

Vi-SEEM

Q By default, data declared outside a parallel region is shared, while data
declared in the parallel region is private

Q Scope can be explicitly defined using attribute clauses:

a

o O 0O O

(]

private —declares variables in its list to be private to each thread
shared—declares variables in its list to be shared among all threads in the team
default — allows the user to specify a default scope for all variables
firstprivate —initializes the variable to the value of their original objects

lastprivate — copies the value obtained from the sequentially last iteration (or
section) back into the original variable object

reduction — performs a reduction operation on the variables in its list (+, *, min,
max, bitwise, user-defined)

threadprivate — used for making thread data persistent

VI-SEEM REG CL, 11-13 Oct 2017 16

Data scope example

v

Vi-SEEM

int 1, n;
float a[l1l00], b[100], result;
n = 100; result = 0.0;
for (1 = 0; i < n; i++) {
ali] =1 * 1.0; b[i] =1 * 2.0;

#pragma omp parallel for default (none) \
shared(n,a,b) private (i) reduction (+:result)
for (i = 0; i < n; i++) {

result = result + (a[i] * b[i]);
}

printf ("Final result = %$f\n", result);

VI-SEEM REG CL, 11-13 Oct 2017

17

Synchronization @!

Vi-SEEM

QO OpenMP provides a variety of synchronization constructs that control
the execution of each thread relative to other threads in the team:

Q Barriers

Locks

Critical sections
Atomic operations
Ordered execution

O 0O 0 0 O

flush and nowait directives

VI-SEEM REG CL, 11-13 Oct 2017 18

Barriers and nowait @3!

Vi-SEEM

Q Every work share construct has an implicit barrier
Q Explicit barrier is defined with barrier construct

#pragma omp parallel
{
x = code();
#fpragma omp barrier

// Can safely use x after barrier

}

Q Implicit barrier can be removed with nowait clause

#fpragma omp for nowait
for (i = 0; i < 100; i++) {

}

VI-SEEM REG CL, 11-13 Oct 2017 19

Critical sections and atomic operations @y

Vi-SEEM

O The critical directive specifies a region of code that must be
executed by only one thread at a time

#fpragma omp parallel
{
x = code();
#fpragma omp critical

do_something (x) ;

}

O Atomic operations are limited to single memory locations, but are
possibly faster due to hardware support

al[i] += x; // Can be interrupted half-complete
#pragma omp atomic

b[i] += x; // Never interrupted because defined as atomic

VI-SEEM REG CL, 11-13 Oct 2017 20

ud

Vi-SEEM

O Steady state heat equation (heat_omp.c)

O Given boundary conditions W =100 W =100

Q Interior point formula N
WN+WE+W5+WW W.E W =100
S

4 .
O Repeat until convergence of estimates [0,0] =0 [0.,N-1]
a Adapted from J. Burkardt’s code

aQ OpenMP concepts used:
Q Parallel regions

We =

j=0 j=N-1

. M-1,N-1
I=M-1 []

Q Shared and private variables
O Reduction

Q Single construct
a Compile: make

VI-SEEM REG CL, 11-13 Oct 2017 21

More OpenMP topics ¥

Vi-SEEM

Q This was just a short introduction, OpenMP provides much more

O More data scope attributes

a
a
a
a
a
a

VI-SEEM REG CL, 11-13 Oct 2017 22

More synchronization constructs

Nested parallelism & collapsing nested loops
Tasks

SIMD support

Offloading (since OpenMP 4.0)

Runtime tuning (affinity, binding...)

g

Vi-SEEM

O Message Passing Model

Q Parallel programs consist of cooperating processes, each with its own memory

O Processes send data to one another as messages
O Message Passing Interface (MPI)

O Standardized message passing model

O Just a standard, not an implementation
O Multiple implementations exist, e.g., Open MPI, MPICH, vendor implementations

Q Reasons for using MPI
Q Standardized & portable
O Rich functionality
O Many high-performance implementations

VI-SEEM REG CL, 11-13 Oct 2017 23

What MPI provides? @3!

Vi-SEEM

Q A plethora of communications functions

O Point-to-point communication routines

Q Collective operations
O Remote-memory access
O Blocking & non-blocking communication

Q Process groups and hierarchies
O Datatypes
O Basic & derived (user-defined) datatypes
0 1/O operations
Q 300+ functions in total

VI-SEEM REG CL, 11-13 Oct 2017 24

v

Vi-SEEM

O MPI processes are collected into groups (communicators)

Q The group of all processes is initially given a predefined name called
MPI_COMM_WORLD

Q A process is identified by a unigue number within each communicator,
called rank

O MPI_Comm_rank (), MPI_Comm_size ()

aQ MPI environment has to be initialized at program start, and finalized
before program ends
O MPI Init (), MPI_Finalize ()

aQ MPI functions are defined in mpi . h header file

VI-SEEM REG CL, 11-13 Oct 2017 25

Hello MPI World! @!

Vi-SEEM

#include "mpi.h"
#include <stdio.h>

int main(int argc, char **argv) {
int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

printf ("Hello MPI World from process %d of %d\n", rank,size);
MPI_Finalize () ;

return O;

VI-SEEM REG CL, 11-13 Oct 2017 26

Compile & run 8

Vi-SEEM

Q Use mpicc compiler

O Wrapper around host C/C++/Fortran compiler

mpicc hello _mpi.c -o hello_mpi
3O Run with mpiexec
Q Specify number of processes and their placement
O Pass additional arguments to MPI runtime
mpiexec -np 4 ./hello_mpi

ad Output:

Hello MPI World from process 0 of 4
Hello MPI World from process 1 of 4
Hello MPI World from process 2 of 4

Hello MPI World from process 3 of 4

O Note that the order of print £ statements may vary if processes share
the output stream

VI-SEEM REG CL, 11-13 Oct 2017 27

Error handling @3!

Vi-SEEM

@ MPI routines return an integer error code
O InC,itis the function result

A In Fortran, it is the parameter of the MPI function
O By default, an error causes all processes to abort
O User can associate an error handler with a communicator

Q Useful for libraries, not so much in scientific computation
Q Hard to recover from errors in parallel programs

VI-SEEM REG CL, 11-13 Oct 2017 28

Basic communication operations @y

Vi-SEEM

O No messages have been exchanged in previous example
Q Data is explicitly sent by one process and received by another
Q Sender calls MPI_send () specifying:

O Whom to send (the rank of receiving process)

O What to send (amount and type of data)
O Optional user-defined tag (arbitrary integer)
O Receiver calls MPI_Recv () specifying:
QO Where the message will come from (rank of sending process)
O What to receive (amount and type of data)
O Optional user-defined tag (arbitrary integer)

O Optional status object, populated with additional information about the receive
operation after it completes

VI-SEEM REG CL, 11-13 Oct 2017 29

Send/Receive example ¥

Vi-SEEM

#include <mpi.h>

int main(int argc, char ** argv) {
int rank, data[l00];

MPI_Init (&argc, &argv);
MPI_ Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 0)
MPI_Send(data, 100, MPI_INT, 1, O, MPI_COMM_WORLD);
else 1f (rank == 1)

MPI_Recv (data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE) ;

MPI Finalize(); return O;

}

VI-SEEM REG CL, 11-13 Oct 2017 K10

Blocking communication @3!

Vi-SEEM

O MPI_Send/MPI_Recv are blocking communication calls

Q Return of the routine implies completion

Q Blocking communication is simple to use but can be prone to deadlocks
O Completion implies variable sent/received can be reused/read

if (rank == 0) {
MPI_Send(...)
MPI_Recv(...)
} else { // Can deadlock here you reverse Send/Recv
MPI_Send(...)
MPI_Recv(...)

VI-SEEM REG CL, 11-13 Oct 2017 31

Non-blocking communication @Y

Vi-SEEM

O MPI_Isend/MPI_Irecv are non-blocking variants

O Returns immediately, we have to test for completion separately

QO Allows overlapping computation and communication

d Semantics:
MPI_TISend(start, count, datatype, dest, tag, comm, request)

MPI_Trecv(start, count, datatype, src, tag, comm, request)

MPI_Wait (request, status)

Q Allinstances of MPI_Send/MPI_recv can be replaced with pars
MPI_ Isend/MPI_Wait and MPI_Irecv/MPI_Wait

0 Blocking and non-blocking sends/receives can be combined
O Use as a synchronization mechanism instead of barriers

Q In case we need processes to exchange data, we can also use
MPI_Sendrecv () instead of non-blocking operations

VI-SEEM REG CL, 11-13 Oct 2017 32

Collective operations @y

Vi-SEEM

Q Collective operations are called by all processes in a communicator
a Most common:

0 MPI_Bcast () — Broadcast (one to all)

O MPI_Reduce () — Reduction (all to one)

O MPI_Scatter () — Distribute data (one to all)
O MPI_Gather () —Collect data (all to one)

O MPI_Alltoall () — Distribute data (all to all)

a Many more

O MPI_Allgather, MPI_Allgatherv, MPI_Allreduce, MPI_Scan,
MPI_Alltoallv, MPI_Scatterv, MPI_Gatherv, MPI_Reducescatter

ad Even more in MPI-3
O Non-blocking collective operations
@ Synchronization is also collective —MPI_Barrier ()

VI-SEEM REG CL, 11-13 Oct 2017 33

lllustration of collective operations 8

a e
- H T
< e
o mms msoior
2 came mman
4 oroioans mmoioe

VI-SEEM REG CL, 11-13 Oct 2017

P1
P2
P3

P4

P1
P2
P3

P4

Vi-SEEM

Scatter

!

Gather

Datatypes @y

Vi-SEEM

Q MPI defines numerous basic datatypes, corresponding to built-in
language datatypes

a MPI_INT, MPI_LONG, MPI_FLOAT, MPI_DOUBLE, MPI_BYTE, MPI_CHAR...

O Used as building blocks for derived datatypes
O Contiguous array of MPI datatypes (MPI_Type_contiguous)

0 Strided block of datatypes (MPI_Type_vector)
O Indexed array of blocks of datatypes (MPI_Type_indexed)
O Arbitrary structure of datatypes (MPI_Type_struct)

Q Derived types must be committed before use
O MPI_Type_commit ()

VI-SEEM REG CL, 11-13 Oct 2017 35

MPI input and output operations v

Vi-SEEM

a Multiple processes may write to separate files
a Have to combine them manually later
0 Difficult to coordinate reading/writing from/to a single file

a MPI1/0O eases this
a Single file pointer

Q Collective operations

O Processes access relevant portion of data based on offset into the file
0 Familiar semantics (open, read/write, close)

O Open/Close:MPI_File_open(), MPI_File close()

O Read/Write: MPI_File read(), MPI File read_at (),
MPI File write (), MPI_File write_at ()

a Binary format is preferable
Q Works great in combination with MPI derived datatypes

VI-SEEM REG CL, 11-13 Oct 2017 36

g

Vi-SEEM

O Steady state heat equation (heat_mpi.c) N
Q Slab decomposition (over M)

Q Processes have to exchange data with neighbors "
Q MPI concepts used:

Initialization and finalization

Q
O Ghost nodes

O Reduction (MPI_Allreduce)
a

a

Data exchanges (MPI_Sendrecv)
MPI 1/0O

VI-SEEM REG CL, 11-13 Oct 2017 37

One-sided communication @3!

Vi-SEEM

a Motivation:

O In point-to-point communication, sender has to wait for the receiver to be ready
to receive the data before it can send the data, causing delay in sending

Q Very expensive operation in blocking mode
a ldea:

O Decouple data movement with process synchronization P1 P2
Q Require only one process for data movement

Preparing buf &r

Waiting for
completion

<

VI-SEEM REG CL, 11-13 Oct 2017 38

Remote Memory Access @y

Vi-SEEM

O One-sided communication functions provide an interface to Remote
Memory Access (RMA) communication methods

O Each process exposes a part of its memory to other processes
Q Other processes can directly read from or write to this memory
aQ Many potential advantages:

0 Significantly faster than send/receive on systems with hardware support for RMA
(think shared memory systems)

Q Irregular communication patterns can be more economically expressed
O Dynamic communication pattern easier to code

VI-SEEM REG CL, 11-13 Oct 2017 39

One-sided communication concepts ¥

Vi-SEEM

a Window:

Q Each processor can make an area of memory available to one-sided transfers

O MPI_Win_create () — Expose local memory to RMA operation
0 MPI_Win_free () —Deallocate window object
Q Main functions:
O MPI_Put () —Move data from local memory (origin) to remote memory (target)
0 MPI_Get () — Retrieve data from target memory into origin’s memory
O MPI_Accumulate () —Update target memory using local values

Origin Target Origin Target Origin

Private
memory
Remotely
accessible
memory

MPI_Put MPI_Get MPI_Accumulate

VI-SEEM REG CL, 11-13 Oct 2017 40

Synchronization in one-sided operations ¥

Vi-SEEM

Data movement operations are non-blocking!

Subsequent synchronization on window object needed to ensure
operation is complete

O Data accesses occur within epochs

0 O

O Epochs define ordering and completion semantics

@ Synchronization models provide mechanisms for establishing (i.e., starting and
ending) epochs

a Active synchronization

O Both origin and target participate in synchronization (declare an epoch)
Q Passive synchronization

Q Only the origin is actively involved

VI-SEEM REG CL, 11-13 Oct 2017 41

Active synchronization @y

Vi-SEEM

O Fence —MPI_Win_ fence ()

a Collective synchronization model

Q SimilartoMPI_wait (), uses global synchronization
Q Starts and ends access and exposure epochs on all processes in the window

Q Post-start-complete-wait — MPI_wWin_start (), MPI_Win_complete(),
MPI_Win_post (), MPI_Win_wait ()

O Finer-grained than fence, origin and target specify who they communicate with

P1 P2 P3 Origin S
onlmo i ow e ’
‘ -----------------
—— o
——
- Complete ---... =
e)

VI-SEEM REG CL, 11-13 Oct 2017 42

Passive synchronization 8

Vi-SEEM

Q Only the origin process is involved in the communication
O Communication paradigm closer to shared memory model

O Lock/Unlock

O Origin process remotely locks/unlocks the window on the target
O Shared and exclusive lock types (MPI_LOCK_SHARED, MPI_LOCK_EXCLUSIVE)

if (rank == 0) {
MPI_Win_lock (MPI_LOCK_EXCLUSIVE, 1, 0, win);
MPI_ Put (outbuf, n, MPI_INT, 1, 0, n, MPI_ INT, win);

MPI_Win_unlock (1, win);

VI-SEEM REG CL, 11-13 Oct 2017 43

g

Vi-SEEM

O Steady state heat equation (heat_rma.c)

Q Use only RMA functions
O Window creation
0 Get/Put
O Accumulate

a Fences
O Better or worse than message passing?

O Easier to access remote data
Q Accumulation is more complex than simple MPI_Reduce ()

VI-SEEM REG CL, 11-13 Oct 2017 44

Hybrid programming @y

Vi-SEEM

A Combining OpenMP and MPI within a single application
a Why hybrid?

O Easier load balancing (with some algorithms)

O Lower (memory) latency and data movement within node
a Why not?
O May not always be better than pure OpenMP or MPI solution

0O Modes of OpenMP/MPI operation

Q@ One MPI process per node

0 OpenMP threads share entire node memory, e.g., 16 threads/node on PARADOX IV
Q One MPI process per socket

0 OpenMP thread set shares socket memory, e.g., 8 threads/socket on PARADOX IV

VI-SEEM REG CL, 11-13 Oct 2017 45

Thread safety in (hybrid) MPI programs v

Vi-SEEM

Q Thread safety in varies in MPl implementations
Q Controlled with MPI_1Init_thread()

O MPI_THREAD_SINGLE — Only one thread will run (same as MPI_Init)

0 MPI_THREAD_FUNNELED — Processes may be multithreaded, but only the main
thread can make MPI calls (MPI calls are delegated to main thread)

O MPI_THREAD SERIALIZED — Processes could be multithreaded and more than
one thread can make MPI calls, but only one at a time

0 MPI_THREAD_MULTIPLE — Multiple threads can make MPI calls, with no
restrictions

VI-SEEM REG CL, 11-13 Oct 2017

46

g

Vi-SEEM

Steady state heat equation (heat_hyb.c)

Combination of MPI and OpenMP

Uses concepts presented in heat_omp.c and heat_mpi.c
Run with single process per node

O mpiexec —np 4 —npernode 1 -bind-to—-none ./heat_hyb ...

QO Not necessarily better performance than pure OpenMP or MPI versions

0O 0O 0O O

VI-SEEM REG CL, 11-13 Oct 2017 47

Summary @Y

Vi-SEEM

Q Parallelism is the only way to achieve performance improvement with
the modern hardware

aQ OpenMP provides for a simple, but powerful, programming model for
shared memory programming
O Fork/join model
Q Directive-based
Q Data parallelism
aQ MPIis the dominant model used in high-performance computing today
O Based on message passing model...
Q ...but also supports RMA-style programming

O Industry standard with multiple high-quality implementations
Q OpenMP and MPI can be combined into a hybrid programming model
Q Basic concepts covered, much more left to explore

VI-SEEM REG CL, 11-13 Oct 2017 48

Additional resources @y

Vi-SEEM

d OpenMP
O LLNL OpenMP tutorial: https://computing.linl.gov/tutorials/openMP/

Q B. Chapman et al., “Using OpenMP”, MIT Press, 2007.

0O Victor Eijkhout’s tutorial: http://pages.tacc.utexas.edu/~eijkhout/pcse/html/
a MPI

O LLNL MPI tutorial: https://computing.linl.gov/tutorials/mpi/

aQ W. Gropp et al., “Using MPI”, MIT Press, 2014.

Q W. Gropp et al., “Using Advanced MPI”, MIT Press, 2014.
QO Code examples

Q John Burkardt’s OpenMP and MPI examples
Q https://people.sc.fsu.edu/~jburkardt/c src/openmp/openmp.html

Q https://people.sc.fsu.edu/~jburkardt/c src/mpi/mpi.html

a http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/

VI-SEEM REG CL, 11-13 Oct 2017 49

