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Agenda

� OpenMP

� Introduction & “Hello World”

� Parallel regions, loop parallelization

� Work sharing constructs

� Data scopes

� Synchronization

� MPI

� Introduction & “Hello World”

� Point-to-point & collective communication

� One-sided communication

� I/O

� Hybrid OpenMP/MPI
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Memory models

Shared memory

� Programmed with OpenMP (or MPI)

Distributed memory

� Programmed with MPI

VI-SEEM REG CL, 11-13 Oct 2017 3

Memory

CPU

CPU

CPU

CPU

CPU(s) Memory

MemoryCPU(s)

CPU(s) Memory

MemoryCPU(s)

Network



Introduction to OpenMP

� Application programming interface (API) for parallel programming on 
shared memory multiprocessors

� Usually cores of a multicore CPU(s)

� Components of OpenMP

� Compiler directives (pragmas)

� Library functions

� Environmental variables

� Supports multiple programming languages

� Fortran, C, and C++

� We will use C in examples

� Provides portable programming model

� Significantly simplifies programming with threads
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Fork–Join model

� OpenMP uses fork–join model

� Master thread executes sequential code

� Fork – Master thread creates/awakens additional threads to execute parallel code

� Join – At end of parallel code created threads die or are suspended
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Directives

� A way for the programmer to communicate with the compiler

� Compiler free to ignore directives (they are hints)

� OpenMP directives

� Case sensitive

� End with newline

� Applied to one succeeding statement (structured block)
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#pragma omp directive-name [clause, ...]

{

// code

}



Parallel regions

� Constructed using parallel pragma

� Block with  parallel pragma is called parallel region

� All threads execute the same segment of code, in parallel

� Example:
#pragma omp parallel

{

// this is executed by a team of threads in parallel

}

� How to identify each individual thread inside a parallel block?
#pragma omp parallel

{

int t = omp_get_thread_num();

printf("Hello world from %d!\n", t);

}
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Hello OpenMP World!

#include <omp.h>

#include <stdio.h>

int main (int argc, char **argv) {

#pragma omp parallel

{

int tid = omp_get_thread_num();

int nth = omp_get_num_threads();

printf("Hello World from thread = %d of %d\n",tid,nth);

}

return 0;

}
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Compiling OpenMP programs

� Requires compiler support

� Most modern compilers support OpenMP

� GNU (gcc), LLVM (clang), Intel (icc), Portland (pgcc), IBM (xlc), Oracle (suncc),

Microsoft (cl.exe) and many more

� GCC:
gcc -fopenmp hello_omp.c –o hello_omp

� Intel:
icc -qopenmp hello_omp.c –o hello_omp

� Intel (older versions):
icc -openmp hello_omp.c –o hello_omp
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Loop parallelism

� Use parallel for pragma:
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#pragma omp parallel

{

#pragma omp for

for (i=1; i<=4*N; i++) {

// …

}

}

#pragma omp parallel for

for (i=1; i<=4*N; i++) {

// …

}

� OpenMP can only handle for loops, while loops can’t be parallelized



Execution of parallel region

#pragma omp parallel

{

code1();

#pragma omp for

for (i=1; i<=4*N; i++) {

code2();

}

code3();

}

code1 code1 code1 code1

code3 code3 code3 code3

1:n n+1:2n 2n+1:3n 3n+1:4n
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Loop scheduling

� Specified with the schedule(kind[,chunk]) clause, where kind is 

� static – Divide the loop into equal-sized chunks or as equal as possible

� Good if all iterations take the same amount of time

� dynamic – Use work queue to assign iterations to unoccupied threads

� Better than static if iterations do not take the same amount of time

� guided – Uses decreasing chunk size
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More loop scheduling

� Other scheduling options:

� auto – The schedule choice is left up to the compiler

� runtime - Use the value of the OMP_SCHEDULE environment variable

� Optional chunk parameter controls the size of blocks

� Increasing the chunk size makes the scheduling more static, and decreasing it 

makes it more dynamic
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Sections

� Useful for independent, separate calculations

� Specified using sections and section directives

� section directives are nested within a sections directive

� Each section is executed once by a thread in the team
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#pragma omp sections

{

#pragma omp section

// one calculation

#pragma omp section

// another calculation

}



Single/Master

� Only one thread executes code enclosed with the single directive

� Implicit barrier at the end

� master directive is similar

� Does not have a barrier at the end
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#pragma omp parallel 

{ 

code1(); // Executed by every thread

#pragma omp single

{

x = code2(); // A single thread executes this code

}

code3(x); // x has correct value here

}



Data scope

� By default, data declared outside a parallel region is shared, while data 
declared in the parallel region is private

� Scope can be explicitly defined using attribute clauses:

� private – declares variables in its list to be private to each thread

� shared – declares variables in its list to be shared among all threads in the team

� default – allows the user to specify a default scope for all variables

� firstprivate – initializes the variable to the value of their original objects

� lastprivate – copies the value obtained from the sequentially last iteration (or 

section) back into the original variable object

� reduction – performs a reduction operation on the variables in its list (+, *,  min, 

max, bitwise, user-defined)

� threadprivate – used for making thread data persistent

� …
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Data scope example

int i, n;

float a[100], b[100], result;

n = 100; result = 0.0;

for (i = 0; i < n; i++) {

a[i] = i * 1.0; b[i] = i * 2.0;

}

#pragma omp parallel for default(none)  \

shared(n,a,b) private(i) reduction(+:result)

for (i = 0; i < n; i++) {

result = result + (a[i] * b[i]);

}

printf("Final result = %f\n", result);
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Synchronization

� OpenMP provides a variety of synchronization constructs that control 
the execution of each thread relative to other threads in the team:

� Barriers

� Locks

� Critical sections

� Atomic operations

� Ordered execution

� flush and nowait directives
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Barriers and nowait

� Every work share construct has an implicit barrier

� Explicit barrier is defined with barrier construct
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#pragma omp parallel

{

x = code();

#pragma omp barrier

// Can safely use x after barrier

}

� Implicit barrier can be removed with nowait clause

#pragma omp for nowait

for (i = 0; i < 100; i++) {

...

}



Critical sections and atomic operations

� The critical directive specifies a region of code that must be 
executed by only one thread at a time

� Atomic operations are limited to single memory locations, but are 
possibly faster due to hardware support
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#pragma omp parallel

{

x = code();

#pragma omp critical

do_something(x);

}

a[i] += x; // Can be interrupted half-complete 

#pragma omp atomic

b[i] += x; // Never interrupted because defined as atomic



Example

� Steady state heat equation (heat_omp.c)

� Given boundary conditions

� Interior point formula

�� �	
�� � �� � �� � �	

4

� Repeat until convergence of estimates 

� Adapted from J. Burkardt’s code

� OpenMP concepts used:

� Parallel regions

� Shared and private variables

� Reduction

� Single construct

� Compile: make
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More OpenMP topics

� This was just a short introduction, OpenMP provides much more

� More data scope attributes

� More synchronization constructs

� Nested parallelism & collapsing nested loops

� Tasks

� SIMD support

� Offloading (since OpenMP 4.0)

� Runtime tuning (affinity, binding…)
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MPI

� Message Passing Model

� Parallel programs consist of cooperating processes, each with its own memory

� Processes send data to one another as messages

� Message Passing Interface (MPI)

� Standardized message passing model

� Just a standard, not an implementation

� Multiple implementations exist, e.g., Open MPI, MPICH, vendor implementations

� Reasons for using MPI

� Standardized & portable

� Rich functionality

� Many high-performance implementations
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What MPI provides?

� A plethora of communications functions

� Point-to-point communication routines

� Collective operations

� Remote-memory access

� Blocking & non-blocking communication

� Process groups and hierarchies

� Datatypes

� Basic & derived (user-defined) datatypes

� I/O operations

� 300+ functions in total
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MPI basics

� MPI processes are collected into groups (communicators)

� The group of all processes is initially given a predefined name called 

MPI_COMM_WORLD

� A process is identified by a unique number within each communicator, 
called rank
� MPI_Comm_rank(), MPI_Comm_size()

� MPI environment has to be initialized at program start, and finalized 
before program ends
� MPI_Init(), MPI_Finalize()

� MPI functions are defined in mpi.h header file
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Hello MPI World!

#include "mpi.h"

#include <stdio.h>

int main(int argc, char **argv) {

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("Hello MPI World from process %d of %d\n",rank,size);

MPI_Finalize();

return 0;

}
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Compile & run

� Use mpicc compiler

� Wrapper around host C/C++/Fortran compiler

mpicc hello_mpi.c -o hello_mpi

� Run with mpiexec

� Specify number of processes and their placement

� Pass additional arguments to MPI runtime

mpiexec –np 4 ./hello_mpi

� Output:
Hello MPI World from process 0 of 4

Hello MPI World from process 1 of 4

Hello MPI World from process 2 of 4

Hello MPI World from process 3 of 4

� Note that the order of printf statements may vary if processes share 
the output stream
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Error handling

� MPI routines return an integer error code

� In C, it is the function result

� In Fortran, it is the parameter of the MPI function

� By default, an error causes all processes to abort

� User can associate an error handler with a communicator

� Useful for libraries, not so much in scientific computation

� Hard to recover from errors in parallel programs
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Basic communication operations

� No messages have been exchanged in previous example

� Data is explicitly sent by one process and received by another

� Sender calls MPI_Send() specifying:

� Whom to send (the rank of receiving process)

� What to send (amount and type of data)

� Optional user-defined tag (arbitrary integer)

� Receiver calls MPI_Recv() specifying:

� Where the message will come from (rank of sending process)

� What to receive (amount and type of data)

� Optional user-defined tag (arbitrary integer)

� Optional status object, populated with additional information about the receive 

operation after it completes
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Send/Receive example

#include <mpi.h>

int main(int argc, char ** argv) {

int rank, data[100];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0)

MPI_Send(data, 100, MPI_INT, 1, 0, MPI_COMM_WORLD);

else if (rank == 1)

MPI_Recv(data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

MPI_Finalize(); return 0;

}
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Blocking communication

� MPI_Send/MPI_Recv are blocking communication calls

� Return of the routine implies completion

� Blocking communication is simple to use but can be prone to deadlocks

� Completion implies variable sent/received can be reused/read
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if (rank == 0) {

MPI_Send(...)

MPI_Recv(...)

} else { // Can deadlock here you reverse Send/Recv

MPI_Send(...)

MPI_Recv(...)

}



Non-blocking communication

� MPI_Isend/MPI_Irecv are non-blocking variants

� Returns immediately, we have to test for completion separately

� Allows overlapping computation and communication

� Semantics:
MPI_ISend(start, count, datatype, dest, tag, comm, request)

MPI_Irecv(start, count, datatype, src, tag, comm, request)

MPI_Wait(request, status)

� All instances of MPI_Send/MPI_recv can be replaced with pars 
MPI_Isend/MPI_Wait and MPI_Irecv/MPI_Wait

� Blocking and non-blocking sends/receives can be combined

� Use as a synchronization mechanism instead of barriers

� In case we need processes to exchange data, we can also use 
MPI_Sendrecv() instead of non-blocking operations
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Collective operations

� Collective operations are called by all processes in a communicator

� Most common:

� MPI_Bcast() – Broadcast (one to all)

� MPI_Reduce() – Reduction (all to one)

� MPI_Scatter() – Distribute data (one to all)

� MPI_Gather() – Collect data (all to one)

� MPI_Alltoall() – Distribute data (all to all)

� Many more
� MPI_Allgather, MPI_Allgatherv, MPI_Allreduce, MPI_Scan,  

MPI_Alltoallv, MPI_Scatterv, MPI_Gatherv, MPI_Reducescatter

� Even more in MPI-3

� Non-blocking collective operations

� Synchronization is also collective – MPI_Barrier()
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Illustration of collective operations
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Datatypes

� MPI defines numerous basic datatypes, corresponding to built-in 
language datatypes

� MPI_INT, MPI_LONG, MPI_FLOAT, MPI_DOUBLE, MPI_BYTE, MPI_CHAR…

� Used as building blocks for derived datatypes

� Contiguous array of MPI datatypes (MPI_Type_contiguous)

� Strided block of datatypes (MPI_Type_vector)

� Indexed array of blocks of datatypes (MPI_Type_indexed)

� Arbitrary structure of datatypes (MPI_Type_struct)

� Derived types must be committed before use
� MPI_Type_commit()
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MPI input and output operations

� Multiple processes may write to separate files

� Have to combine them manually later

� Difficult to coordinate reading/writing from/to a single file

� MPI I/O eases this

� Single file pointer

� Collective operations

� Processes access relevant portion of data based on offset into the file

� Familiar semantics (open, read/write, close)

� Open/Close: MPI_File_open(), MPI_File_close()

� Read/Write: MPI_File_read(), MPI_File_read_at(), 
MPI_File_write(), MPI_File_write_at()

� Binary format is preferable

� Works great in combination with MPI derived datatypes
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Example

� Steady state heat equation (heat_mpi.c)

� Slab decomposition (over M)

� Processes have to exchange data with neighbors

� MPI concepts used:

� Initialization and finalization

� Ghost nodes

� Reduction (MPI_Allreduce)

� Data exchanges (MPI_Sendrecv)

� MPI I/O
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One-sided communication

� Motivation:

� In point-to-point communication, sender has to wait for the receiver to be ready 

to receive the data before it can send the data, causing delay in sending

� Very expensive operation in blocking mode

� Idea:

� Decouple data movement with process synchronization

� Require only one process for data movement
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Remote Memory Access

� One-sided communication functions provide an interface to Remote 
Memory Access (RMA) communication methods

� Each process exposes a part of its memory to other processes

� Other processes can directly read from or write to this memory

� Many potential advantages:

� Significantly faster than send/receive on systems with hardware support for RMA 

(think shared memory systems)

� Irregular communication patterns can be more economically expressed

� Dynamic communication pattern easier to code
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One-sided communication concepts

� Window:

� Each processor can make an area of memory available to one-sided transfers

� MPI_Win_create() – Expose local memory to RMA operation

� MPI_Win_free() – Deallocate window object

� Main functions:

� MPI_Put() – Move data from local memory (origin) to remote memory (target)

� MPI_Get() – Retrieve data from target memory into origin’s memory

� MPI_Accumulate() – Update target memory using local values
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Synchronization in one-sided operations

� Data movement operations are non-blocking!

� Subsequent synchronization on window object needed to ensure 
operation is complete

� Data accesses occur within epochs

� Epochs define ordering and completion semantics

� Synchronization models provide mechanisms for establishing (i.e., starting and 

ending) epochs

� Active synchronization

� Both origin and target participate in synchronization (declare an epoch)

� Passive synchronization

� Only the origin is actively involved
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Active synchronization

� Fence – MPI_Win_fence()

� Collective synchronization model

� Similar to MPI_Wait(), uses global synchronization

� Starts and ends access and exposure epochs on all processes in the window

� Post-start-complete-wait – MPI_Win_start(), MPI_Win_complete(), 

MPI_Win_post(), MPI_Win_wait()

� Finer-grained than fence, origin and target specify who they communicate with
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Passive synchronization

� Only the origin process is involved in the communication

� Communication paradigm closer to shared memory model

� Lock/Unlock

� Origin process remotely locks/unlocks the window on the target

� Shared and exclusive lock types (MPI_LOCK_SHARED, MPI_LOCK_EXCLUSIVE)

VI-SEEM REG CL, 11-13 Oct 2017 43

if (rank == 0) {

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 1, 0, win);

MPI_Put(outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win);

MPI_Win_unlock(1, win);

}



Example

� Steady state heat equation (heat_rma.c)

� Use only RMA functions

� Window creation

� Get/Put

� Accumulate

� Fences

� Better or worse than message passing?

� Easier to access remote data

� Accumulation is more complex than simple MPI_Reduce()
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Hybrid programming

� Combining OpenMP and MPI within a single application

� Why hybrid?

� Easier load balancing (with some algorithms)

� Lower (memory) latency and data movement within node

� Why not?

� May not always be better than pure OpenMP or MPI solution

� Modes of OpenMP/MPI operation

� One MPI process per node

� OpenMP threads share entire node memory, e.g., 16 threads/node on PARADOX IV

� One MPI process per socket

� OpenMP thread set shares socket memory, e.g., 8 threads/socket on PARADOX IV
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Thread safety in (hybrid) MPI programs

� Thread safety in varies in MPI implementations

� Controlled with MPI_Init_thread()

� MPI_THREAD_SINGLE – Only one thread will run (same as MPI_Init)

� MPI_THREAD_FUNNELED – Processes may be multithreaded, but only the main 

thread can make MPI calls (MPI calls are delegated to main thread)

� MPI_THREAD_SERIALIZED – Processes could be multithreaded and more than 

one thread can make MPI calls, but only one at a time

� MPI_THREAD_MULTIPLE – Multiple threads can make MPI calls, with no 

restrictions
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Example

� Steady state heat equation (heat_hyb.c)

� Combination of MPI and OpenMP

� Uses concepts presented in heat_omp.c and heat_mpi.c

� Run with single process per node
� mpiexec -np 4 –npernode 1 –bind-to-none ./heat_hyb ...

� Not necessarily better performance than pure OpenMP or MPI versions
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Summary

� Parallelism is the only way to achieve performance improvement with 
the modern hardware

� OpenMP provides for a simple, but powerful, programming model for 
shared memory programming

� Fork/join model

� Directive-based

� Data parallelism

� MPI is the dominant model used in high-performance computing today

� Based on message passing model…

� …but also supports RMA-style programming

� Industry standard with multiple high-quality implementations

� OpenMP and MPI can be combined into a hybrid programming model

� Basic concepts covered, much more left to explore
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Additional resources

� OpenMP

� LLNL OpenMP tutorial: https://computing.llnl.gov/tutorials/openMP/

� B. Chapman et al., “Using OpenMP”, MIT Press, 2007.

� Victor Eijkhout’s tutorial: http://pages.tacc.utexas.edu/~eijkhout/pcse/html/

� MPI

� LLNL MPI tutorial: https://computing.llnl.gov/tutorials/mpi/

� W. Gropp et al., “Using MPI”, MIT Press, 2014.

� W. Gropp et al., “Using Advanced MPI”, MIT Press, 2014.

� Code examples

� John Burkardt’s OpenMP and MPI examples

� https://people.sc.fsu.edu/~jburkardt/c_src/openmp/openmp.html

� https://people.sc.fsu.edu/~jburkardt/c_src/mpi/mpi.html

� http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/
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