

Basic Visualization Techniques & ParaView

Theodoros Christoudias Cyprus Institute

Visualizing Scientific Data

- Common Visualization Techniques
 - Mesh view
 - Outer surface with attributes
 - Slicing
 - Glyphing
 - Contouring
 - Volume rendering

Visualization Software

 We will explain how to generate the common visualizations using the ParaView visualization software

What is ParaView

- An open-source application for visualizing scientific data sets
- Supports a wide range of platforms, from laptop to supercomputers with 100,000 cores
- Built on top of VTK, the visualization toolkit, but with intuitive graphical user interface
- Modular design, can be controlled using scripting language such as python
- Can run on distributed memory parallel computers to process large data sets

ParaView Software Stack

ParaView Data Model

 ParaView can process the following types of spatial data

ParaView User Interface

 Draw the face either in wireframe or surface (or both) mode using a preferred graphics library (such as OpenGL)

Mesh Surface with Colors

- Map the attribute values at the vertices of each cell to colors by a lookup table
- Draw the faces in surface mode with the color attributes using a preferred graphics library (such as OpenGL)
- Colors are interpolated across the surface

Data Slicing

- Intersecting the mesh with a slicing surface (slicer)
- The slicer can be represented as an implicit function f(x,y,z) = 0
- A plane is typically used (Ax + By + Cz+ D = 0), but does not need to be
- Data attributes are sampled at the intersection points between the slicer and the mesh, and the resulting polygonal mesh is rendered

- Pros: Precise
- Cons: extremely local, and can cause visual cluttering
- Example: arrows to depict vectors

- Show all the points whose attribute values equal to a constant; f(x,y,z) = C
- Contouring on a 2D surface: curves
- Contouring in a 3D volume: surfaces
- Discrete algorithms are needed to

extract the contours (e.g. Marching Cubes)

Volume Rendering

- A method to visualize the entire 3D data set by simulating light transport across the volume
- A 2D projection of 3D disgrete samples

ParaView Demo

https://www.paraview.org/download

http://christoudias.cyi.ac.cy/data