W R F : Κλιματικές Εφαρμογές

Ελένη Κατράγκου katragou@auth.gr

Τομέας Μετεωρολογίας Κλιματολογίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

19 Δεκεμβρίου 2016, Αθήνα

Κλιματικές προβολές

- 2
- Κλιματική προβολή (projection) είναι μια μελλοντική εκτίμηση του κλίματος, η οποία βασίζεται σε συγκεκριμένες προϋποθέσεις σχετικά με την κοινωνικο-οικονομική και τεχνολογική εξέλιξη του πλανήτη.
- Σε αντίθεση με τη μετεωρολογική πρόγνωση, η κλιματική προβολή οδηγείται από σημαντικές αλλαγές σε βασικά στοιχεία του κλιματικού συστήματος, όπως π.χ. η ατμοσφαιρική σύσταση (θερμοκηπικά αέρια), τα οποία διαμορφώνουν την εξέλιξη του κλίματος.
- Το αποτέλεσμα των κλιματικών προβολών εκφράζουν πιθανά μελλοντικά κλίματα, βασισμένα σε διάφορα πιθανά μελλοντικά σενάρια.
- Στις εκθέσεις του IPCC (Διακυβερνητική Επιτροπή για την ΚλιματικήΑλλαγή) δίνεται ιδιαίτερη βαρύτητα στην εκτίμηση του πιθανού εύρους (spread) της αλλαγής σε σημαντικές κλιματικές παραμέτρους (π.χ. θερμοκρασία, βροχόπτωση).

Κλιματικά σενάρια

- 3
- Στην 5ⁿ έκθεση του IPCC (AR5) χρησιμοποιήθηκε ένας νέος τύπος κλιματικών σεναρίων τα Representative Concentration Pathways (RCPs).
- Τα σενάρια αυτά ορίστηκαν με τέτοιο τρόπο ώστε να οδηγούν σε συγκεκριμένο κλιματικό εξαναγκασμό (radiative forcing), με διαφορετικούς συνδυασμούς εκπομπών θερμοκηπικών αερίων και αεροζόλ και κοινωνικοοικονομικά κριτήρια.
- Τα σενάρια αυτά ονομάζονται RCP8.5, RCP6, RCP4.5 and RCP2.6, και τα νούμερα αντιστοιχούν στον κλιματικό εξαναγκασμό εκφρασμένο σε W/m² (π.χ. RCP8.5 αντιστοιχεί σε ένα σενάριο με κλιματικό εξαναγκασμό 8.5 W/m²).

Radiative forcing

- 4
- Είναι το μέτρο της επίπτωσης που μπορεί να έχει κάποιος παράγοντας (θερμοκηπικά αέρια, αεροζόλ κλπ) στην αλλαγή του ισοζυγίου ακτινοβολίας του συστήματος Γης-Ατμόσφαιρας.
- Χρησιμοποιείται σαν δείκτης για το μέτρο της κλιματικής αλλαγής που μπορεί να προκληθεί από ένα αίτιο.
- Στις εκθέσεις του IPCC ο κλιματικός εξαναγκασμός αναφέρεται στις αλλαγές του ενεργειακού ισοζυγίου (εκφρασμένες σε W/m²) σε σχέση με τις τιμές αναφοράς του 1750.

'The change in net (down minus up) irradiance (solar plus longwave in $W m^{-2}$) at the tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with surface and tropospheric temperatures and state held fixed at the unperturbed values'. Source: IPCC-WG1- Ch2

Περιοχικά κλιματικά μοντέλα

- 5
- Το μοντέλο WRF θα εφαρμοστεί σαν περιοχικό κλιματικό μοντέλο (Regional Climate Model RCM), οδηγούμενο από πεδία μοντέλων παγκόσμιας κυκλοφορίας (General Circulation Models GCMs) ή δεδομένα reanalysis.
- Η συγκεκριμένη μέθοδος εκτέλεσης προσομοιώσεων ονομάζεται μέθοδος
 δυναμικού υποβιβασμού (dynamical downscaling) (Laprise et al. 2008)
- Θα θεωρήσουμε οτι η σύζευξη των μοντέλων παγκόσμιας και περιοχικής κλίμακας είναι μονόδρομη (one-way nesting).

Hindcasts/historical/projections

- Ανάλογα με την εφαρμογή και τους στόχους για τους οποίους εκτελείται μια κλιματική προσομοίωση μπορούμε να έχουμε τους παρακάτω τύπους κλιματικών προσομοιώσεων/δεδομένων:
 - Hindcasts: Αφορούν σε παρελθοντικό χρόνο και το περιοχικό κλιματικό μοντέλο οδηγείται από δεδομένα reanalysis (π.χ. ERAinterim- WRF, 1990-2008)
 - Historical: Αφορούν σε παρελθοντικό χρόνο και το περιοχικό κλιματικό μοντέλο οδηγείται από μοντέλο παγκόσμιας κλίμακας (π.χ. CESM-WRF, 1965-2005)
 - Projections: Αφορούν σε μελλοντικό χρόνο και το περιοχικό κλιματικό μοντέλο οδηγείται από μοντέλο παγκόσμιας κλίμακας κάτω από ένα μελλοντικό σενάριο (π.χ. CESM-WRF, 2006-2100, RCP4.5).

7 WRF hindcast

Προσομοίωση: ERAinterim – WRF Χρονική περίοδος: 1990-2008 Περιοχή: Ευρώπη Χωρική ανάλυση: 0.44°

Προετοιμασία δεδομένων WRF

- Τα δεδομένα εισόδου του WRF προετοιμάζονται με μια σειρά pre-processing tools (WPS)
 - **geogrid.exe**: προετοιμάζει το domain
 - **ungrib.exe**: προετοιμάζει τα αρχεία εισόδου (forcing fields) του μοντέλου
 - metgrid.exe: παράγει τα αρχεία met_em* αρχεία που θα χρησιμοποιήσει το WRF στο domain που ορίστηκε από το geogrid.exe (οριζόντιο interpolation)
- Στη συνέχεια εκτελούνται τα:
 - real.exe (κατακόρυφο interpolation)
 - wrf.exe (εκτέλεση της προσομοίωσης)

Δεδομένα εισόδου

3D Δεδομένα εισόδου

- Θερμοκρασία
- Άνεμος U,V
- Γεωδυναμικό ύψος
- Σχετική Υγρασία

2D Δεδομένα εισόδου

- Πίεση στην επιφάνεια (surface pressure)
- Πίεση ανηγμένη στην επιφάνεια (sea level pressure)
- Θερμοκρασία επιφανείας (skin temperature)
- Θερμοκρασία στα 2 m
- Σχετική (απόλυτη) υγρασία στα 2 m
- Άνεμος U,V στα 10 m

Ενδείκνυται αλλά δεν επιβάλλεται πληροφορία για:

- Αλλαγές στη θερμοκρασία θάλασσας (SST): το μοντέλο θα τρέξει χωρίς να ανανεώνονται τα SSTs αλλά τα αποτελέσματα δεν θα είναι επιστημονικά αποδεκτά για περιοχικές κλιματικές προσομοιώσεις
- Ύψος εδάφους
- Ισοδύναμο πάχος χιονιού
- Αλλαγές στον θαλάσσιο πάγο (sea ice): το μοντέλο θα τρέξει χωρίς να ανανεώνεται ο θαλάσσιος πάγος, αλλά τα αποτελέσματα θα έχουν συστηματικό bias σε περίπτωση που το domain επικεντρώνεται σε μεγάλα γεωγραφικά πλάτη

Έλεγχος δεδομένων εισόδου

10

- Είναι πολύ σημαντικό πριν τρέξει το WRF να ελέγξει κανείς προσεκτικά τα δεδομένα εισόδου του μοντέλου (met_em* αρχεία) ώστε να επιβεβαιώσει ότι δεν υπάρχει κάποιο προφανές σφάλμα.
- Παρακάτω φαίνεται ένα κακό παράδειγμα εφαρμογής SSTs (°C) σε κλιματική προσομοίωση (αριστερά), όπου το interpolation στην ακτογραμμή είναι σε πολύ κακή ανάλυση. Δεξιά φαίνεται το διορθωμένο πεδίο.

WRF namelist.input &time_control

start_year	= 1989,	
start_month	= 01,	Για μια συνεχόμενη κλιματική προσομοίωση (1990-2008) ενδείκνυται να σταλεί ένα job via
start_day	= 01,	κάθε χρόνο.
end_year	= 1990,	Ένας χρόνος θεωρείται ικανοποιητικός για spin υp (π.χ. 1989).
end_month	= 01,	Interval seconds: Συχνότητα εισόδου των
end_day	= 01,	οριακών συνθηκών (6 ώρες = 21600 sec). Δεν συνιστάται η χρήση οριακών συνθηκών με χαμηλότερη συχνότητα.
interval_seconds	= 21600,	history interval: Συχνότητα καταγραφής δεδομένων εξόδου (180 min = 3 h). Η επιλογή
history_interval	= 180,	αποτελεσμάτων (π.χ. μελέτη ημερήσιων κύκλων κλπ).
frames_per_outfile	= 8,	frames per outile: 8 time frames αντιστοιχούν σε 8 τρίωρα, δηλ. σε 1 μέρα ανα αρχείο εξόδου.

WRF namelist.input &time_control

restart	= .false.,
restart_interval	= 105120,
debug_level	= 0,

auxhist3 outname = 'wrfxtrm_<domain>_<date>,

auxhist3_interval = 1440,

frames_per_auxhist3 = 7,

- restart: false για τον πρώτο χρόνο (1989) .true. για τα υπόλοιπα
- restart_interval: εκφράζεται σε λεπτά, (105120 min = 73 days δηλ. 5 restart files το χρόνο).
- debug_level = 0 για production runs, μπορεί να αυξηθεί στις διαγνωστικές προσομοιώσεις.
- auxhist3: οδηγεί στη δημιουργία αρχείων με ακραίες τιμές (π.χ. wrfxtrm_d01_1989-01-08_00:00:00). Για interval = 1440 min = 24 h, ορίζονται οι μέγιστες τιμές ημέρας.
- Η συγκεριμένη επιλογή θα σώζει μέγιστες ημερήσιες τιμές ανά 7 μέρες σε ένα αρχείο.

WRF namelist.input &time_control

auxinput4_inname = 'wrflowinp_d<domain>',

 $auxinput4_interval = 360,$

- auximput4: πολύ σημαντικό για τις κλιματικές προσομοιώσεις, ώστε να ανανεώνονται μεταβλητές όπως SST, sea ice κλπ.
- Το δεδομένα εισόδου ανανεώνονται ανά 6 ώρες.
- Προσοχή: Χρειάζεται το κατάλληλο pre-processing στο WPS και

&physics

sst_update = 1

Επίδραση SSTs στη θερμοκρασία

- Η μεταβολή στα SSTs επιδρά σημαντικά στην ατμοσφαιρική θερμοκρασία
- Ο μηχανισμός φαίνεται να παίζει σημαντικότερο ρόλο τη χειμερινή περίοδο
- Χαμηλότερες θερμοκρασίες στην επιφάνεια της θάλασσας επηρρεάζουν τη μεταφορά υδρατμών και ενέργειας, τα οποία αλληλεπιδρούν με την ακτινοβολία πάνω από τις χερσαίες επιφάνειες (Cattiaux et al. 2011)

EOBS

Στο παρακάτω σχήμα φαίνεται πώς η βελτίωση των SSTs οδηγεί σε βελτίωση της θερμοκρασίας πάνω από την ξηρά (αξιολόγηση με πειραματικά δεδομένα).

WRF namelist.input & domains

-	

time_step	= 180,	time step : 180 sec (3 min) όχι μεγαλύτερο από 6*dx [km] δηλ 6*50 km =
e_we	= 134,	300 sec = 5 min
e_sn	= 131,	Σε περίπτωση Seg. fault and CFL Violation, σημαίνει ότι ποέπει να μειωθεί το time step
e_vert	= 31,	
p_top_requested	= 5000.,	e_we, e_sn, e_vert : διαστάσεις του domain p_top : κορυφή του μοντέλου (συνήθως 50 hPa με 20 hPa)
num_metgrid_levels num_metgrid_soil_levels	= 31, 5 = 4,	num_metgird_levels: ο αριθμός των κατακόρυφων επιπέδων των metem* αρχείων num_metgrid_soill_levels: ο αριθμός των επιπέδων εδάφους των metem* αρχείων

Αλληλεπιδράσεις παραμετροποιήσεων

WRF namelist.input & physics

mp_physics	= 6,	mp_physics : WRF single moment, 6-class scheme (ίδια για όλα τα domain)
ra_lw_physics ra_sw_physics	= 3, = 3,	ra_lw/sw_physics : CAM. Μπορεί κάποιος να επιλέξει διαφορετικά σχήματα για ακτινοβολία μικρού και μεγάλου μ.κ.
radt sf_sfclay_physics	= 50, = 1,	radt : λεπτά για να κληθεί το σχήμα της ακτινοβολίας. Συνιστάται να μην είναι μεγαλύτερο από λεπτό ανα Km (πχ 50 min για χωρική ανάλυση 50 Km). Κοινό για όλα τα nest.
sf_surface_physics	= 2,	sf_sfclay_physics : surface layer = Revised MM5 Monin-Obukhov scheme
num_soil_layers	= 4,	sf_surface_physics : land-surface model = NOAH Ανάλογα αλλάζει και το num_soil_layers

Mooney et al, 2013

TABLE 1. Physical parameterizations schemes used in each of the WRF simulations.

'T2 shows greatest
sensitivity to land
surface models'

Simulation No.	Microphysics	PBL scheme	Land surface model	Longwave radiation	Shortwave radiation	Convective scheme
Simulation 1	WSM3	YSU	Noah	RRTM	CAM	Kain-Fritsch
Simulation 2	WSM3	YSU	Noah	CAM	CAM	Kain-Fritsch
Simulation 3	WSM3	YSU	RUC	RRTM	CAM	Kain-Fritsch
Simulation 4	WSM3	YSU	RUC	CAM	CAM	Kain-Fritsch

-10

Sim10

-10

-10

Sim11

-10

Sim12

WRF namelist.input & physics

19

bl_pbl_physics	= 1,	boundary layer: YSU scheme
bldt	= 0,	 bldt=0: το boundary layer καλείται σε κάθε χρονικό βήμα
cu_physics	= 1,	 cumulus: Kain Fritsch (εάν dx < 3 Km τότε δε χρειάζεται)
cu_rad_feedback	= .true.,	 cumulus-radiation feedback = true : επιτρέπει την αλληλεπίδραση ακτινοβολίας με νέφη υποκλίμακας (subgrid scale).

Επίπτωση cu_physics στη βροχόπτωση

Στα παρακάτω σχήματα φαίνεται η μέση βροχόπτωση JJA για το διάστημα 1990-2008 από κλιματικές προσομοιώσεις τύπου hindcast και η σύγκριση με παρατηρησιακά δεδομένα (EOBS).

- με το σχήμα Kain-Fritsch (KF) scheme, cu_rad_feedback = .true.
- με το σχήμα Grell-Freitas (GF) scheme, cu_rad_feedback = .true.

Αλληλεπίδραση ακτινοβολίας – νεφών υποκλίμακας

- Η επιλογή cu_rad_feedback = .true., επηρρεάζει σημαντικά τα επίπεδα βροχόπτωσης στις κλιματικές προσομοιώσεις κυρίως τους θερμούς μήνες (Alapaty et al. 2012)
- Η επιλογή επιτρέπει την αλληλεπίδραση των subgrid scale νεφών με την ακτινοβολία με αποτέλεσμα να:
 - μειώνεται η ακτινοβολία SW που φτάνει στο έδαφος
 - μειώνεται η διαθέσιμη ενέργεια για ανωμεταφορά (CAPE)
 - μειώνεται η βροχόπτωση (convective precipitation)

```
pr sim02-EOBS10 JJA 1990-1994
```


sim03-EOBS10 JJA 1990-1994

WRF namelist.input & physics

num_soil_layers	= 4,	num_soil_layers : Εξαρτάται από το land surface model
num_land_cat	= 21,	num_land_cat : αριθμός από Land categories . 21 εαν χρησιμοποιούνται δεδομένα του MODIS
sst_skin sst_update	= 1, = 1,	sst_skin :1 επιβάλλεται για κλιματικές προσομοιώσεις, ώστε να ανανεώνονται τα SST skin
tmn_update	= 1,	
lagday	= 150,	tmn_update : 1 επιβάλλεται για κλιματικές προσομοιώσεις ώστε να ανανεώνεται η εδαφική θερμοκρασία
		lagday : ανά πόσες μέρες υπολογίζεται η θερμοκρασία εδάφους
usemonalb	=.true.,	usemonalb = true χρειάζεται όταν sst_update

Επίδραση sf_surface_physics στη θερμοκρασία

- Το LSM NOAH έχει 4 επίπεδα για μεταφορά θερμοκρασίας/υγρασίας στο έδαφος
- Το LSM CLM4 έχει 10 επίπεδα για μεταφορά θερμοκρασίας/υγρασίας, και δυναμική βλάστηση
- Επιλογή CLM4 αντί του NOAH,
 επιβαρύνει τις προσομοιώσεις κατά
 ~30% του υπολογιστικού χρόνου.

WRF namelist.input & physics

o3input	= 2,
aer_opt	= 1,

24

- o3input: κατακόρυφο προφίλ όζοντος
- aer_opt: επιλογές αεροζόλ
 - 0: χωρίς αεροζόλ
 - 1: κλιματολογία Tegen
 - 2: custom κλιματολογία

Επίδραση aer_opt στην ακτινοβολία

- Στο σχήμα δίνεται η επίπτωση στην ηλιακή ακτινοβολία μικρού μήκους κύματος στο έδαφος με διεύθυνση προς τα κάτω, λόγω επίδρασης με τα αεροζόλ
 - Αριστερά: Πείραμα με aer_opt = 0
 (χωρίς αεροζόλ)
 - Δεξιά: Πείραμα με aer_opt=1 (κλιματολογία Tegen)
- Επάνω σειρά : Άνοιξη
- Κάτω σειρά: Καλοκαίρι

WRF multi physics ensemble

26

- Οι προσομοιώσεις σμήνους (ensembles) χρησιμοποιούνται πολύ συχνά για τη μελέτη της αβεβαιότητας στις κλιματικές προσομοιώσεις.
- Παρακάτω δίνεται ένας πίνακας με διαφορετικές παραμετροποιήσεις του WRF για μια σειρά προσομοιώσεων τύπου hindcast για την περιοχή της Ευρώπης.

Label	Institute	Nz/TOA	Microphys.	Cum.	Rad.	Rel. zone
WRF-A WRF-A_SST WRF-C WRF-D WRF-F	CRPGL AUTH BCCR IDL IPSL	50/20 hPa 30/50 hPa 30 m/50 hPa 40/50 hPa 32/50 hPa	WSM6 WSM6 WSM3 WSM6 WSM5	KF KF KF BMJ GD	CAM3 CAM3 CAM3 RRTMG RRTMG	10/exp 5/linear 10/exp 5/exp 5/linear
WKF-G	UCAN	50 m/ 50 nPa	W SIM0	GD	CAM3	10/imear

Katragkou et al. 2015

WRF multi-physics ensemble

27

Συστηματική υποεκτίμηση της θερμοκρασίας T2 DJF, ειδικά στις χαμηλότερες θερμοκρασίες.

Η υποεκτίμηση του σμήνους κυμαίνεται από 0.2 (BI) μέχρι 1.9°C (SC).

Bl: British Isles; IP: Iberian Peninsula; FR: France; ME: Mid-Europe; AL: Alps; MD: Mediterranean ; EA: East-Europe; SC: Scandinavia

Katraąkou et al. 2015.

WRF multi physics ensemble

28

Το σμήνος προσομοιώσεων υπερεκτιμά τη βροχόπτωση.

Η υπερεκτίμηση κυμαίνεται ανάμεσα σε 25 και 55% ανάλογα με την παραμετροποίηση σε κάθε μοντέλο.

Το χειμώνα η υποεκτίμηση της βροχόπτωσης κυμαίνεται σε χαμηλότερα επίπεδα: 15-30%

Bl: British Isles; IP: Iberian Peninsula; FR: France; ME: Mid-Europe; AL: Alps; MD: Mediterranean ; EA: East-Europe; SC: Scandinavia

Katragkou et al. 2015.

Benchmarking WRF για κλιματικές εφαρμογές

29

Benchmarking WRF για κλιματικές εφαρμογές

WRFv3.8/purempi_bench

European domain with 0.11° resolution

You need 80 days to simulate a 10-year climatology with 360 cores

> D01: 444x437x50 grid points D02: 473x441x50 grid points

European domain with 0.11° resolution and nested CPS domain (dx \sim 3 Km)

You need 90 days to simulate a 10-year climatology using 600 cores

Ευχαριστίες

- Οι κλιματικές προσομοιώσεις έχουν γίνει στο HPC.ARIS της ΕΔΕΤ (προγράμματα REGINA, VERGINA)
- Ευχαριστίες για τη συνεισφορά των:
 - Στέργιος Κάρτσιος, Υποψήφιος Διδάκτορας, Τμήμα Γεωλογίας, ΑΠΘ
 - Βασίλης Παυλίδης, Υποψήφιος Διδάκτορας, Τμήμα Γεωλογίας, ΑΠΘ
 - Μαργαρίτα Βαβρίτσα, απόφοιτη ΜΠΣ Μετεωρολογίας Κλιματολογίας και Ατμοσφαιρικού Περιβάλλοντος, Τμήμα Γεωλογίας, ΑΠΘ

32 Radiation (ra_lw_physics; ra_sw_physics)

SW/LW radiation schemes

- 33
- Compute clear-sky and cloud radiation fluxes
- Typically 8-16 bands are used in LW; 11-19 for CAM, RRTMG in SW

Scheme	Reference	GHG for LW
RRTM	Mlawer et al., 1997	Constant or yearly GHG
CAM	Collins et al, 2004	Yearly GHG
RRTMG	lacono et al., 2008	Constant or yearly GHG
New Goddard	Chu & Suearz, 2001	Constant
FLF	Gu et al., 2011	Constant
Held-Suarez		None
GFDL	Fels & Schwarzkopf, 1981	Constant
Dudhia (only SW)	Dudhia, 1989	-

Surface radiation budget

- Radiation is separated into different components at the surface:
 - Downward SW incoming from the sun: Q_s
 - Upward SW reflected solar : αQ_s
 - Downward LW from the atmosphere: Q_{Ld} (function of atmospheric temperature, clouds, greenhouse gases, aerosols)
 - Upward LW from the surface: Q_{Lu} (function of albedo, soil type, soil moisture, soil temperature etc)
- Diffuse, direct, and direct normal shortwave components are output
- Aerosols affect diffuse/direct ratio

Input to radiation options

Green House Gases:

 CAM; Provides yearly green house gases from 1765 to 2500. Available scenarios: IPCC-AR5:RCP4.5, RCP6, RCP8.5 (default) and IPCC-AR4. New in Version 3.5.

Climatological ozone :

RRTMG: latitudinal (2.82 degrees), height and monthly variation, as opposed to the default ozone used in the scheme that only varies with height. *o3input* = 2 (default option in V3.7).

Aerosol data

- RRTMG; Tegen et al. (1997): organic carbon, black carbon, sulfate, sea salt, dust and stratospheric aerosol; 5 degrees in longitude and 4 degrees in latitudes; monthly variations. *aer_opt* = 1. New in Version 3.5.
- RRTMG and Goddard; Either AOD or AOD plus Angstrom exponent, single scattering albedo, and cloud asymmetry parameter can be provided via constant values from namelist or 2D input fields via auxiliary input stream 15. Aerosol type can be set too. *aer_opt = 2*. New in V3.6.
- RRTMG; from climatological water- and ice-friendly aerosols *aer_opt = 3*.

Land Surface Model (sf_surface_physics) 36 Snow Longwave Radiation Rain Shortwave Radiation Latent heat. Water Vapor Sensible neat Surface Albedo Soil Layers Heat flux and soil moisture calculation Vegitation Output Input Latent and Sensible heat flux Pressure, Wind, Temperature, Humidity Surface wind stress Rain and Snow from moist process Emitted LW, Reflected and Absorbed SW SW and LW radiative fluxes from radiation Surface temperature, Snow depth

LSM options

37

LSM	Characteristics
Thermal diffusion	Soil temperature only scheme, using five layers
NOAH	soil temperature and moisture in 4 layers, fractional snow cover and frozen soil physics
RUC	Soil temperature and moisture in 6 layers, multi-layer snow and frozen soil physics
Pleim-Xiu	2-layer force-restore soil temperature and moisture model.2 indirect nudging schemes that correct biases in 2-m air temperature and moisture
NOAH-mp	Multi-layer snow pack; Horizontal and vertical vegetation density can be prescribed or predicted
SSiB	3 snow layers to realistically simulate snow processes
CLM4	1-layer vegetation canopy, a 5-layer snowpack, and a 10-layer soil column

Surface energy budget

- Radiation components at the surface:
 - Downward SW incoming from the sun: Q_s
 - Upward SW reflected solar : αQ_s
 - Downward LW from the atmosphere: Q_{Ld} (function of atmospheric temperature, clouds, greenhouse gases, aerosols)
 - Upward LW from the surface: Q_{Lu} (function of albedo, soil type, soil moisture, soil temperature etc)
- Q_H: sensible heat flux (function of ΔT between surface and ground, wind speed, vertical T gradient, type of vegetation)
- Q_E: latent heat flux (function of temperature, wind, vegetation, soil type)
- Q_G: ground heat flux (function of surface temperature, soil type/moisture, vegetation)
- The upper 25 cm of soil has the largest diurnal changes in temperature
- On yearly time scale soil temperature vary at depths below 1.5 m

Cumulus parameterization (cu physics)

39

cu_physics	Scheme	Reference	Added
1	Kain-Fritsch	Kain (2004, JAM)	2000
2	Betts-Miller-Janjic	Janjic (1994, MWR; 2000, JAS)	2002
3	Grell-Freitas	Grell et al. (2013)	2013
4	Old Simplied Arakawa-Schubert	Pan and Wu (1995), NMC Office Note 409	2005/ 2011
5	Grell-3	-	2008
6	Tiedtke	Tiedtke (1989, MWR), Zhang et al. (2011, MWR)	2011
7	Zhang-McFarlane	Zhang and McFarlane (1995, AO)	2011
10	KF-CuP	Berg et al. (2013, MWR)	2016
11	Multi-scale KF	Zheng et al. (2015, MWR)	2015
14	New SAS	Han and Pan (2011, Wea. Forecasting)	2011
16	New Tiedtke	Zhang and Wang (2016)	2015
84	New SAS (HWRF)	Han and Pan (2011, Wea. Forecasting)	2012
93	Grell-Devenyi	Grell and Devenyi (2002, GRL)	2002
99	Old Kain-Fritsch	Kain and Fritsch (1990, JAS; 1993, Meteo. Monoar.)	2000

Deep and Shallow convection

- Deep convection: convective elements that vertically span much of the troposphere
 - Warms and dries the environment
- Shallow convection: vertically span only a small portion of the troposphere. Assumed not to produce precipitation
 - no net warming or drying since no water is removed from the atmosphere.
 - Cool and moist upper half of the cloud layer (detrainment and evaporation)
 - Warms and dries the lower half of the cloud layer (moisture condensation, release of LH)
- The grid spacing needed to resolve individual convective elements is between 25 and 1000 m. Thus convective parameterizations are a necessary component of numerical models running with resolutions of dx > 4 Km.

42 Microphysics (mp_physics)

mp_physics	Scheme	Reference	Added
1	Kessler	Kessler (1969)	2000
2	Lin (Purdue)	Lin, Farley and Orville (1983, JCAM)	2000
3	WSM3	Hong, Dudhia and Chen (2004, MWR)	2004
4	WSM5	Hong, Dudhia and Chen (2004, MWR)	2004
5	Eta (Ferrier)	Rogers, Black, Ferrier, Lin, Parrish and DiMego (2001, web doc)	2000
6	WSM6	Hong and Lim (2006, JKMS)	2004
7	Goddard	Tao, Simpson and McCumber (1989, MWR)	2008
8	Thompson	Thompson, Field, Rasmussen and Hall (2008, MWR)	2009
9	Milbrandt 2-mom	Milbrandt and Yau (2005, JAS)	2010
10	Morrison 2-mom	Morrison, Thompson and Tatarskii (2009, MWR)	2008
11	CAM 5.1	Neale et al. (2012, NCAR Tech Note)	2013
13	SBU-YLin	Lin and Colle (2011, MWR)	2011
14	WDM5	Lim and Hong (2010, MWR)	2009
16	WDM6	Lim and Hong (2010, MWR)	2009
17	NSSL 2-mom	Mansell, Ziegler and Bruning (2010, JAS)	2012
18	NSSL 2-mom w/ CCN prediction	Mansell, Ziegler and Bruning (2010, JAS)	2012
19	NSSL 1-mom		2013
21	NSSL 1-momlfo		2013
22	NSSL 2-mom w/o hail		2015
28	Thompson aerosol-aware	Thompson and Eidhammer (2014, JAS)	2014
30	HUJI SBM 'fast'	Khain et al. (2010, JAS)	2014
32	HUJI SBM full	Khain et al. (2004, JAS)	2014

Microphysics parameterization

44

Considers only grid-scale average so will not resolve fine-scale structures

Microphysical processes

Dudhia, 2010

Single and Double moment schemes

- Single-moment (SM) schemes have one prediction equation for mass (kg/kg) per species (Qr, Qs, etc.) with particle size distribution being derived from fixed parameters
- Double-moment (DM) schemes add a prediction equation for number concentration (#/kg) per DM species (Nr, Ns, etc.)
 - DM schemes may only be double-moment for a few species
 - DM schemes allow for additional processes such as size-sorting during fall-out and sometimes aerosol (CCN) effects

Αναφορές

- Alapaty, K., Herwehe, J. A., Otte, T. L., Nolte, C. G., Bullock, O. R., Mallard, M. S., Kain, J. S., and Dudhia, J.: Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling, Geophys. Res. Lett., 39, L24808, doi:10.1029/2012GL054031, 2012.
- Cattiaux, J., Vautard, R., and Yiou, P.: North-Atlantic SST amplified recent wintertime European land temperature extremes and trends, Clim. Dynam., 36, 2113–2128, 2011
- Katragkou, E., Garcia-Diez, M., Vautard, R., Sobolowski, S., Zanis, P., Alexandri, G., Cardoso, R. M., Colette, A., Fernandez, J., Gobiet, A., Goergen, K., Karacostas, T., Knist, S., Mayer, S., Soares, P. M. M., Pytharoulis, I., Tegoulias, I., Tsikerdekis, A., and Jacob, D.: Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble, Geoscientific Model Development, 8, 603-618, 2015.
- Laprise, R., de Elía, R., Caya, D., Biner, S., Lucas-Picher, P., Diaconescu, E., Leduc, M., Alexandru, A., Separovic, L. Challenging some tenets of Regional Climate Modelling (2008) Meteorology and Atmospheric Physics, 100 (1-4), pp. 3-22.
- Mooney, P.A., Mulligan., F.J., Fealy, R. Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of europe over the period 1990-95 (2013) Journal of Climate, 26 (3), pp. 1002-1017.

Αναφορές

- Neelin J.D., Climate Change and Climate Modeling, Cambridge University Press, 2011
- Dielke R.A, Mesoscale Meteorological Modeling, Elsevier, 2013
- Stensrud D.J., Parameterization Schemes: Keys to understanding Numerical Weather Prediction Models, Cambridge University Press, 2007
- WRF-ARW modelling system , version 3

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html

http://www2.mmm.ucar.edu/wrf/OnLineTutorial/index.htm

Representative Concentration Pathways (RCPs)

https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=welcome

□ IPCC, 5TH Assessment Report

https://www.ipcc.ch/report/ar5/

Βαβρίτσα Μ.Σ., Μελέτη ευαισθησίας της ανάδρασης μεταξύ νεφών και ακτινοβολίας με προσομοιώσεις περιοχικού κλιματικού μοντέλου, ΜΔΕ, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Σχολή Θετικών Επιστημών, Τμήμα Γεωλογίας 2016 <u>http://ikee.lib.auth.gr/record/285222</u>

