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Supercomputing Drives Science through
Simulation

Environment Finding Cures  Materials/ Inf. Tech
Weather/ Climatology Medicine Spintronics Plasma Physics

Pollution / Ozone Hole Biology Nano-science Fuel Cells



Distribution of

HPC based on Science Area

CURRENT RUNNING JOBS BY SCIENCE AREA
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Compute Power

Computing is transforming biomedical

research | _
ﬁv\ National rrace ¥ B

Strategic _ 8

Computing

Initiative
Exascale

(NSCI)
LCF

Mira 786k cores
Titan 280k cores

+ GPUs
Enveloped virus

200 mil+ atoms
1-100 WS

ribosome
2 mil atoms Performance
100S NS (in FLOPS):
Megaflop 10°
Gigaflop 10°

ATPase Teraflop 10!2

500k atoms Petaflop 101°

protein ion channel 10s ns
10k atoms 100k atoms

100S pS 1ns time

Source: adapted from Prof. Rommie Amaro



Key areas of biomedical research where HPC
is key

Protein Biophysics
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Molecular Simulations across scales
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Molecular Modeling
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Molecular Dynamics

e molecular/atomic level picture
structure and dynamics

e property prediction

e ion transport A\

XF ALA 157
¢ solvent effects =7

e protein stability / conform. changes, ...
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From DNA, to genes and proteins

The Central Dogma

DNA

(Gene)
2
. tRNA\’g

S mRNA

v

Chromosome

RIBOSOME — "

v
000@O® PROTEN
¥

: 3 X - Rays
£ 2 uétpal = Protein

B rvnu— Protein Pictures

* Proteins are the means of expression

20.000 genes in the nuclei of our cells of genes to functional molecules

- PROTEINS * Proteins perform essential functions
in the cell
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Protein Modeling, Protein-Drug Modeling

A. Amino Acids with Electricaly Charged Side Chains
Positive
A

Arginine Histidine Lysine
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B.  Amino Acids with Polar Uncharged Side Chains C. Special Cases

Serine Threonine Asparagine Glutamine Cysteine Selenocysteine  Glycine Proline
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D.  Amino Acids with Hydrophobic Side Chain
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Ka 2.24
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pkKa Data: CRC Handbook of Chemistry, v2010
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Dan Cojocari, Department of Medical Biophysics, University of Toronto, 2010

red blood cell
B chain

)
helical shape of the
polypeptide molecule

Drugs associate with proteins through
Intermolecular Interactions!

Hydrogen Bonds
Electrostatic Interactions
van der Waals Forces
mt — it Interactions
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Drugs

Paracetamol (Depon) H Aspirin
Normally they are small organic molecules H
- Therapy O/©/ NY O\@/
- Relief H ©
- Prevention ‘
- Quality of life improvement
- Life expectancy prolongation O

<50
50-59
60-69
70-79
80-87

HEENER(OIO

Not applicable
| No data

Mnyn: World Health Organization Life expectancy map
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Phases of Pharmaceutical Development

Target discovery Lead discovery
Target Target Lead Lead o
Identification Validation Identification Optimization Clinical Phases (I-1ll)
Few selected ligands as FDA
| potential drugs Approval

28 million ligands
currently known

1-2 ligands will enter
Clinical Trials

Duration: 12 — 15 years, Cost: ~ 1 billion US $

Academy of Athens —Zoe Cournia



Traditional Drug Discovery

* Random screening of hundreds of thousands of molecules
with High Throughput Screening (HTS) for combating the pathogen

« Random discoveries (i.e. penicillin, viagra)
* Trying out existing drugs and modifications

e Estimated number of small molecules 1066
that can act as drugs

* Estimated number of atoms in the 1 050

world 1

Structure-based approaches + Targeted Therapy
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Rational Drug Discovery

O Identify important genes for a diseases

0 Targeting/inactivating genes (proteins) of the pathogen with small

molecules = drugs
RECEPTOR

e, J 0
TARGETED THERAPY! o m
g .

—
Curr Opin Drug Discov Devel. 2002 May; 5(3): 355-360
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The era of Personalized Medicine

Lung Cancer

!

genotyping

4% of patients with
non-small cell lung carcinoma
Rearrangement in ALK protein

U

carcinogenesis

SAFE, SAFE. UNSAFE. UNSAFE,
EFFECTIVE NOT EFFECTIVE NOT EFFECTIVE EFFECTIVE

Drug design for this specific
subset of patients

!

Crizotinib for ALK+
lung cancer patients




Personalized Medicine: new drug generation

Table 1| Selected oncology agents in Phase lll biomarker-driven clinical trials

Drug Company Indication Biomarker m
= Precedented biomarkers
Bre o ) ) ) xifen,
Iniparib Sanofi/BiPar Sciences Breast cancer Triple-negative ipies
Col Pertuzumab Roche/Chugai Breast cancer HER2 ditux,
Neratinib Pfizer Breast cancer HER2
Noi Iressa,
Bosutinib Pfizer CML Philadelphia
Act Nimotuzumab YM BioSciences Breast cancer HER2 Fiple
Afatinib Boehringer Ingelheim NSCLC EGFR =
2°' Dacomitinib Pfizer NSCLC EGFRandKRAS  Z8vain
al
Novel biomarkers e
Adh
Midostaurin Novartis AML FLT3
Hol Cilengitide Merck Serono Clioblastoma Methylated MGMT N
He: Trabedersen Antisense Pharma Glioma TGFp2 ssive
HIV GSK2118436 GlaxoSmithKline Melanoma BRAF
HIv GSK1120212 GlaxoSmithKline Melanoma BRAF 2

Sour AML, acute myeloid leukaemia; CML. chronic myeloid leukaemia; EGFR. epidermal growth factor receptor:
FLT3. FMS-like tyrosine kinase 3;: MGMT, 6-O-methylguanine-DNA methyltransferase; NSCLC. non-small-
celllung cancer; TGFP2. transforming growth factor-f2.

Chiang and Million, Nature 2011
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Crizotinib (Xalkori, Pfizer)

Structure of the anaplastic lymphoma kinase (ALK)
Complexed with the drug crizotinib — (PDB ID: 2XP2)

Protein-Ligand interactions:

Intermolecular Interactions
(Enthalpy)

Hydrogen Bonds
Electrostatic Interactions
van der Waals Forces
mt — it Interactions

Entropy
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Intermolecular Interactions

‘) Hydrogen Bonds

PROTEIN

8+ . A
' b - -
9*) / v QHEANDD -+
S 8%
'+ N

~0

van der Waals Forces
1t — 1, cation - it interactions
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Molecular Simulations?

Nobel Prize in Chemistry 2013

Zoe Cournia — Academy of Athens
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Nobelprize.org

The Official Web Site of the Nobel Prize @ Educational ° Video o About Us

Home Nobel Prizes and Laureates Nomination Ceremonies Alfred Nobel Events

. vy The Nobel Prize in Chemistry 2013 . .
NObel PrlZCS and % Martin Karplus, Michael Levitt, Arieh Warshel LIVG ; \
Laureates Webcast

Geseisls < »> > The Nobel Prize in e
¥ About the Nobel Prize in ChemlStry 2013

Chemistry 2013 Greetings to
i“’“ma’y the 2013 Nobel
rize Announcement
Press Release Laureates
Advanced Information | Choose a Nobel Prize | v

Popular Information
Greetings

> Martin Karplus

» Michael Levitt

» Arieh Warshel

Martin Karplus

Michael Levitt Arieh Warshel
All Nobel Prizes in Chemistry

All Nobel Prizes in 2013 The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus,
Michael Levitt and Arieh Warshel "for the development of multiscale

models for complex chemical systems".

“OlLdll 255 SiLellidp AU e < U ylipiit WVCI IVICUId D LU LD -.
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MD Simulations study structure + dynamics

Is there a fast and efficient way to study the structure and dynamics
of biomolecules in atomic-level detail?

4

Molecular Dynamics simulations

Step 1. Model the potential energy and use coordinates from experimental
structures and assign initial velocities (Etotal = Epotential + Ekinetic)

Step 2. Integrate Newton’s second law and get the new velocities (v) of the
system and the new coordinates (r) of the atoms

Step 3. Macroscopic properties m Q;Q:%
can be expressed through v and ® & |&

Q

s | &3
& @@

System of interest
Zoe Cournia — Academy of Athens




Examples of MD simulations of proteins

Shan et al (2011) Schulten et al (2012)
Cancer drug dasatinib binding on Src kinase Folding of the Villin Headpiece protein

4 BUOE th

(Cray)

Anton (ASIC)



The Potential Energy Function (Force Field)

1
The energy of the system is represented by the Hamiltonian: H=K+V = EmV2 @

V(r) —Lponded + E

non—-bonded

bond stretch

torsional

intermolecular O
interactions

valence angle
bend

intramolecular
nonbonded

Zoe Cournia — Academy of Athens



Modeling the Potential E: Bond stretch potential

B Molecules undergo vibrational motion, which is modeled as a
harmonic potential according to HOOKE's law

F = —kx = -VV(x)
V(X) = Ebond—stretch = 21,2]9611’73 kb (b _b0)2

B K, represents the force constant and bO represents the equilibrium
value around which the bond oscillates

B This harmonic potential is valid only for deviations of 0.1 A or less

Zoe Cournia — Academy of Athens



Harmonic vs Morse potential

B The Morse term is more accurate, however it is generally not used in
MD simulations since it requires 3 parameters to be specified for
each bond R

v(l)zDe{ ] —exp[—a(l—lo)”-"

B The Morse potential would allow a bond to stretch to an unrealistic
length and break

Morse potential for a C-H bond Harmonic potential for a C-H bond

Zoe Cournia — Academy of Athens



Bond angle potentials

B Describe the deviation from an ideal bond angle geometry

Ebond—bend :zangles KG ( e_90)2

B K, represents the angle bending constant, 6, represents the
deviation from the ideal bond angle

Zoe Cournia — Academy of Athens



Torsion angle potentials

This terms models the steric barrier between atoms separated by 3
covalent bonds

Erorare—along—bond = Z:1,4parirs Kq) ( I —cos (}’l q))>

B The motion associated is rotation, described by a diheuiai anyie
around the middle bond

B The potential is assumed to be periodic and expressed as a cosine
function

B K, represents rotation constant, n represent the periodicity of the
rotational barrier and ¢ the dihedral angle

Zoe Cournia — Academy of Athens



Electrostatic interactions: The Coulomb potential

B Electrostatic interaction decays slowly with distance, considered
long range interactions. Can be modeled by Coulomb’s law.

1 494,
Eelectrostatic = E :

I,J 4711'90 7}]'

B r; represents the distance between two atoms having charges g;
and gq;

B ¢, represents the vacuum permittivity, a number relating the ability of
a material to carry current

Zoe Cournia — Academy of Athens



The van der Waals potential: Lennard-Jones

E VdW energy best described by
a Lennard-Jones potential

/ "vaw - 12 6
r O. O.

_ gy | | i
Evdw — E 48ij
T g

r’=2"¢c

Expresses the interaction energy between two atoms

Contains an attractive part and a repulsive part

Attractive forces due to London forces (dipole —dipole interaction)
Repulsive part due to Pauli-exclusion principle and inter-nuclear repulsion

¢ is the depth of the potential well, o is the finite distance at which the
inter-particle potential is zero

Zoe Cournia — Academy of Athens



The Potential Energy Function (Force Field)

Bonding Potential Bonding Angle Potential Impropertorsion Potential
L L] T T T
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w2 w :z
S
1- -
q 1
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T

T T T T
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N Lo
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Energy minimization of the potential E function

Prior to starting a simulation it is advisable to do energy minimization

Useful in correcting flaws such as steric clashes between atoms and distorted
bond angles/lengths

B Goal of energy minimization is to find the local energy minimum to start an MD
simulation from a realistic structure or to perform normal mode analysis to
analyze the system vibrations at the energy minimum

’ 0 f ) f
L2 B
dx; s
-
ol
5 \
c
= 4
\ Most common minimization
algorithms use derivatives of the
energy with respect
to the coordinates to predict the

Conformational Parameter location of the closest minimum.
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Application of E min: Normal Mode Analysis

Normal modes are characteristic vibrations of a system’s structure around a local
energy minimum. In molecular mechanics, bonds are represented as springs.

* Characteristic Vibrations Water normal modes

e Harmonic Potential

Symmetric Stretch
3657 em™

1
N
i
O/QO Bend 1595 cm™
- Asymmetric Stretch
3756 om™

e Conformational fluctuation = a superposition of normal modes

e At the potential minimum

e Orthogonal normal modes

Zoe Cournia — Academy of Athens




Molecular Dynamics Simulations

B Born — Oppernheimer Approximation

B The molecular dynamics simulation is based on Newton’s law of motion:
F=ma

B By knowing the force that is acting on each atom it is possible to determine
the acceleration of each atom.

B Integration of the equation yields a trajectory that describes the positions,
velocities and acceleration of each atom as they are varied with time

B Once the positions and velocities of each atom are known, the state of the
system can be predicted at any time

B Energy of the system: 1

H=T+V==—mv’ +V(r)
B Initial coordinates are taken from exper?mental structures and velocities from
a distribution, e.g. Maxwell-Boltzmann



MD Formalism

M [nitial coordinates are taken from experimental structures and velocities from
a distribution, e.g. Maxwell-Boltzmann

B Newton’s equation of motion

d’r,

l

F =ma =m.
B The force can be writteri as mé grad@ﬁt aftﬁhe potential energy

|

B Combine the two equai;rong, tgget/(r)
i i

2
B Atrajectory is obtaineggigglvi_ng_yﬁ_s qiﬂgirential eq -
dr " dt? X

Zoe Cournia — Academy of Athens



How to integrate Newton’s equation of motion?

B The potential energy is a function of the atomic positions of all the
atoms in the system.

B Due to this complexity there is no analytical solution

B Use algorithms to obtain the positions, velocities, accelerations at a
later time t + Ot to a sufficient degree of accuracy

B Ot is limited by the fastest vibration of the system, ie. the C-H bond
(0t =1fs =101 s)

B An estimate of the positions, velocities, etc may be obtained with
Taylor’s expansion 1
y P r(t+0t) =r(t)+ov(t) +—ota(t) +...

new position  old position old velocity acceleration
v(t+ot)=v(t)+ota(t) +...

new velocity  old velocity acceleration

Zoe Cournia — Academy of Athens



Examples of numerical algorithms: Verlet

B Common use is the VERLET algorithm. e
t
B For a differential equation of second order of the type djﬁ =V (r(?))

with initial conditions r(t,) = r,and % = v, » an approximate numerical
t

solution r, = r(t,) at the times t, = t, + ndt may be obtained by the method:

B setr,=r,+v,0t+ % V(ry)ot?
B forn=1,2iterate:
Fner = 2rn —rM ¥ V(rn)5t2

O In MD, each position is determined from the current position and position at
time t — ot 5
r(t+ot)=2r(t)-r(t-ot)+a(t)or +...
O Vecocities calculated from
v(£) = r(t+ot)—r(t-or)
20t




Molecular Dynamics Simulations

B Integration broken down to many small stages: ot
B The total force on each particle in the configuration at a time t is the

vector sum of its interactions with other particles.

B From the force determine the acceleration of the particles and
combine it with positions and velocities at time t to calculate at time t

+0t

B The force is constant during the time step

Give atoms initial positions r®_ choose short At, v

:

Getforces F=-V V(r')and a = F/m

3

Move atoms. r*" = r sy At + 1,2 AP +

Move time forward. t=t+ At

:

..

Zoe Cournia — Academy of Athens
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Statistical Ensembles & Phase Space

A statistical ensemble is a set of microscopic states corresponding to a given
macroscopic state.

A thermodynamic ensemble is in statistical equilibrium and is used to derive the
properties of thermodynamic systems from the laws of classical or quantum mechanics

Microcanonical, NVE Canonical, NVT E Grand Canonical, uvT
A . . - . . - - - . -
= o o ® i3 bath EoNo o o bath EONO of '/D
o o0 ¢ S o o o f o o
N o o o = 5 o o ° 0 a 5 o o 5 ,9
o : & 0 @ oy A ° o R o % M of ~ 0\ o)
o @ o o o o S0 TR OLUR - R P S8 o= s
R o (S| o o o EIN, ® ® o 0‘ 4 EIN| g /Jj g
> o] (o] o i (¢] o] o) a ° ® o /:) 5 JQ‘
o 5 ° o & o o > o < 5 . o o ,P ;)‘ LY : ~o ’
© i o R ° o © o © 9 Q 4 P oo 4
o} . o o (o} o 0/ 'pd (]
® 5 © o o ° o @ 5 © o o o F ~ Fa

e PhaseSpase Detected

=100
B0l T
g 703
« 605

50

40

30

20

A statistical ensemble is a set of representative representative
points in the 6N-dimensional phase space.

The microstates move through phase space, describing a
dynamic trajectory and are described by coordinates and
momenta evolving in time.
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Statistical Mechanics

Molecular Simulation Experiment
Microscopic Description Macroscopic Description
Quantum Mechanics: Thermodynamics:

Eigenvalues E;and eigenfunctions

W(r,,r,,...,ry) of Schrodinger’s equation Relations for the system at

equilibrium and

Molecular Mechanics: non-equilibrium states

Kinetic and Potential energy E(r,v)

 Use statistical mechanics to derive macroscopic properties from the microscopic picture

Zoe Cournia — Academy of Athens



The partition function

Boltzmann law: — =8 n, n; populations of energy states

For the lowest energy state: n. = noe_ﬁgi P=1/kT T

\ )
|

Ne 7
The molecular partition function n. = q = e
determines how particles distribute :

1
e—/35i
themselves over accessible states Partition function per particle

The above treatment applies to quantum statistical mechanics (discrete eigenstates)

In classical statistical mechanics, the position and momentum variables of a particle can vary
continuously, so the set of microstates is actually uncountable.

Describe the partition function using an integral rather than a sum.

1 ,,
- / exp[-BH(py - - px, 21 - - -2n)] &py - - Ppy By - - Py

Zoe Cournia — Academy of Athens



Themodynamic propertis are a function of Q

Canonical partition function, N,V,E constant

1 1
WY N WY N

O(N,V,E) = Y (N.V,E) = [d"ad™"p

N i -Be' g __(9InQ S=U_U°+kln
E=—E€e U UO_ (8/3 )V T Q

Connection to macroscopic thermodynamics: S(N,V,E)=k,InQ(N,V,E)

Thermodynamic properties can be derived from the above, e.g.

1 0S8 1 dIlnQ
—=|— = —=k,
r \ou),, T oE |y,

Zoe Cournia — Academy of Athens




Statistical Ensembles

NVE

H =K + V =total energy = constant

K= Y >mv, EU(V,,)
d_rl=a_H=U dpi_ H_ v _
dt apj i dt -a,,j 873 ]
NVT

H=K+V + Ks+ Vs = constant

Ks = st2
Vs = (f+ l)kBTln(S)

ps = conjugate momentum of thermostat

Q = conjugate mass

s = generalized coordinate of the thermostat
f =number of degrees of freedom

Zoe Cournia — Academy of Athens




Periodic Boundary Conditions

M.P. ALLEN e Goal: To simulate ‘infinite’ system

D.J. TILDESLEY : : : :
e Particles experience forces as if they were in

a bulk fluid

qomput.er * |f one molecule leaves the box then it
Slmulatlon is replaced by an image particle that

5 = enters from the opposite side
of Liquids

OXFORD SCIENCE PUBLICATIONS

Zoe Cournia — Academy of Athens




Running an MD simulation

Initial Coordinates

Minimize Structure

Assign Initial Velocities

Heating Dynamics

Equilibration Dynamics

Rescale Velocities

No

emp OK?

Yes

Production Dynamics

Analysis of Trajectories

Zoe Cournia — Academy of Athens
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PI3Ka is a lipid kinase that promotes cell survival

Growth factor
stimulation

\/

PI45P,  PIP, PIP, PIP,

PDK1 PKB |(Akt)
™ T TEar
Receptor tyrosine / T \
kinase mTORC2

Proliferation Cell Survival
Metabolism

plasma membrane

Fayard et al, 2010

lipid tail

o)

* Active PI3Ka phosphorylates PIP2 to PIP3 at the plasma O_FE,ZO

o}

0-P-0
6 5| (')
membrane. <)i '
il g
O-P-0
* PIP3 recruits Akt close to PDK1. PIP2 0

* Co-localization of these proteins leads to phosphorylation of residues,
which in turn leads to proliferation, growth, survival.

Zoe Cournia — Academy of Athens



PI3Ka: most commonly mutated kinase in cancer

* PI3Ka is a membrane-associated lipid kinase

* Involved in cell growth, proliferation,
differentiation

e Most commonly mutated kinase in the S ne 87 RO 1047
human genome => cancer By

80% of all mutations:

G|U545 LyS |H|51047Arg I Huang et al. (Science, 2007) = g _

l 30% of breast cancer patients
MD Simulations

Virtual screening

Property prediction
Mutant and isoform specific In vitro & In vivo assays

therapies? Lead Optimization

Zoe Cournia — Academy of Athens
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The H1047R mutant of PI3Ka opens up a crevice




MD Simulations of WT and H1047R PI3Ka

.,\ P(l‘\ P
335-
Model of the WT p110a subunit Model of the H1047R p110a subunit
based on 2RDO X-ray structure based on 3HIZ X-ray structure

<> WT and H1047R PI3Ka (modeling of p110a), 300K atoms

<> 100-150 ns equilibration, 100 ns production run, NPT, NAMD+CHARMM
<> FIVE independent MD simulations of each protein

<> Total simulation time (~1us)

Zoe Cournia — Academy of Athens



MD Simulator requirements

e Parallelization

* (getting an idea of the level of computation needed)

* For every time step, every atom
must communicate within its cutt-
off radius with every other atom.

 Alot of inter-processor
communication that can be scaled
well is needed.

Zoe Cournia — Academy of Athens



MD Simulator requirements

 Parallelization

(getting an idea of the level of computation needed)

* Whole System is broken down into
boxes (processing nodes)

e Each node handles the bonded
interactions within a cutoff

H BH B
&@%

4>'&

Zoe Cournia — Academy of Athens
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Access to HPC-How many cores should be used?

5000
4500 |
4000 |

3500 |
)

d

@ 3000

N n
o (o)}
o o
o o

Nanoseconds p

0'.
0

P 1

PR IR —— | PRI ST R PR R R n
1000 2000 3000 4000 5000 6000 7000 8000

Number of CPUs

Figure 2: GROMACS
performance in CURIE Thin
Nodes for a system of 2M
particles.

Table 1. Benchmark of a 2M-particle system on Curie Thin Nodes.

# cores absolute timing (s) speedup
128 1124.022 1.0
256 590.897 1.9
512 312.562 3.6
1024 174.532 6.5
2048 109.207 10.3
4096 79.805 14.1
8192 59.291 19.0




Kinase Domain Organization

C-lobe

N-lobe

Catalytic loop
C-terminus
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Hydrogen Bond Analysis

(ca—t;lyﬁc loop
activation loop

- The Hbond between activation loop Leu956 and His1047 breaks Magenta: residue 1047
- The a-helix of H1047 partially unfolds in the presence of 1047R

- Displacement of Arg949 creates a different Hbond network in the mutant, which
changes the activation and catalytic loop positions

H917, RESPONSIBLE FOR ATP HYDROLYSIS, IS ORIENTED TOWARD THE CATALYTIC
POCKET IN THE MUTANT AND AWAY FROM THE POCKET IN THE WT

Zoe Cournia — Academy of Athens



Simulation of the normal protein

= \WIF motif

Catalytic loop

C-terminus

A §

His-917 points away from the active site, while the C-terminus prevents
the catalytic loop from reaching the ATP-binding site.



Simulation of the mutated protein
- WIF motif

Catalytic loop

G935
" "Phea34

Asp933

His-917 points towards the active site, while the C-terminus does not
interfere with the access of the catalytic loop to the ATP-binding site.



PI3Ka — membrane interactions

* PI3Ka binds to the membrane to convert
PIP2 to PIP3

* The activation of the His1047Arg mutant
takes place through a change in the way
pl110a interacts with the cell membrane
(Mandelker et al, 2009).

Mandelker et al. (PNAS, 2009)

* His1047Arg mutant has a 2-fold increase
in lipid kinase activity.

*Mechanism of action of mutant? Gabelli et al. (2009)
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SPR Experiments for membrane-protein binding

N
& &R
P110a/p85 61 g
% L:IQI@@

PI3K ,g? \§

%3%  Jivaons

%mw@ ’

b1l

vv‘

§
W ..\\‘

{
>
o (},'.v‘

(‘7 ’

, \b bNeutrawdm

T, T
'

SPR chip

(Agianian lab, University of Thrace, Greece)

Experiments & Simulations
show that the mutated
protein binds more to cell
membranes than the
normal one
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WT vs H1047R membrane binding kinetics

Association
D|$$0C|at|on 100 B WT
® B H1047R
80
0
60
’ 40
M ASSOCIATION
¥ H1047R . I
g
3 o
. WT
0
20 I RESIDUAL BOUND
Lipo + 2% PIP2 40

I .

(Agianian lab, University of Thrace)

Association: level of binding during association
Residual Bound: residual protein binding to the membrane after buffer injection
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Proposed mechanism of H1047R overactivation

OVERACTIVATION

\\ Extracellular

Cytoplasm

~
_______

[Enhanced binding of H1047R

PI3Ka to the membrane

— =

C-terminal

PI3Ka
H1047R

PI3Ka
H1047R

-
--------

[Loss of C-terminal] [H|5917 orientation J

auto-inhibition change

Gkeka et al, PLOS Comput Biol (2014)
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Binding site identification on PI3Ka conformers

Binding site prediction on  Blue: WT Crystal Green: Cluster

PI3Ka representative Structure by Hon etal ~ conformation from MD
structures (2011) Dots: Predicted binding site

Does this binding site also exist in the mutant form and can it be
exploited for selective drug design?

Zoe Cournia, Academy of Athens



Drugs bind on protein pockets through

chemical interactions

Structure of the anaplastic lymphoma kinase (ALK)
Complexed with the drug crizotinib — (PDB ID: 2XP2)

Protein-Ligand interactions:

Intermolecular Interactions
(Enthalpy)

Hydrogen Bonds
Electrostatic Interactions
van der Waals Forces
nt — it Interactions

Entropy

Zoe Cournia — Academy of Athens



Computing protein-drug structure

LY |
\{\\\»,q

A
“" ‘&‘ | L) .
T
’\
vl =N

oD
9}\>_TC %
e

K

Q3
;’
XX,

Virtual

Screening

https://www.youtube.com/watch?v=u49k72rUdyc
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Mutant-specific drugs in “allosteric” pockets

PI3Ka RBD% o PIK-108
|

Allosteric Effect?| [
Non-ATP pocket ® =z ' ~ O

eActive site and non-

Catalytic site ATP pocket occupied
by PIK-108

Helical

)\\

= -
‘\' )
2
ARy
>

*MD simulations of
WT, H1047R apo and

holo forms (100ns
production run)

)
a.

ll
|/
\
;

L
) ‘_" . 7\
‘X St

21
&1
’u’.\,"
3
q
9
>
S

/
-

Muta |on SI e ./"’“ ¥y A
X N0 4
*\" vf \'“ KLY
o * Can we discover

C2 \/IN | ISH2 allosteric pockets
AN Hon et al, Oncogene (2011) with simulations?

*Is the non-ATP
pocket allosteric?
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Assessment of allosteric pockets with PCA

PIK-108
pocket




orrelation of non-ATP pocket motion to active site:

Positional covariance matrix (through PCA)

(a) human WT (holo) (b) human WT (apo) (e) murine WT (holo)

- i T 0.02
kal0 . & I ¥ il T : : sttt 0.015
: 3 P 2 - B | B NS S ' »
933-958 | | 45 i : &l 3g = E [ s e e s IHLE T - oo
' : : = ; 0.005
DRH o 4 Al # |
! 0
Tyr836 -0.005
= ) = i -
11800 [ lai . ‘, s A oo N 4 y -0.01
L i I = = =N i |8 : : ] -0.015
721727 :ﬁ == LEEREE | . A : :H - Tulldliu vee = N, T
i - - - : ; . ] . ] : ' : — o

A O 6 RS
AW L PR S

: &
(c) human H1047R (holo) (d) human H1047R (apo) A< &
kal0 l s i ; Activation loop
bl W .o =T Membrane binding domain 1
933-958 - ] A TN i Specificity/adenine pocket
I
DRH ; # &l ] Non-ATP pocket:
. - & H _ 954,955,960,980,981,984,
Tyr836 o =+ 1039,1043,1044,1047,1051
11e800 ; : -
4 ) ISR The non-ATP pocket motion is
721-727 =% : " :'n'—'*"*"—*—"'—“—“ NOT correlated to the motion
of the active site
A O 40 X PO AT T T S-SR
3 3

Gkeka et al., J Phys Chem B (2014)



Is the non-ATP pocket an allosteric site?

Allosteric inhibitors bind to a different site than the active site and
influence the active site conformation.

Simulations show that the non-ATP pocket is not allosteric
How can we measure this experimentally?

*Competitive inhibitors of the active site will be influenced by high ATP
concentration (they will lose activity)

*Non-competitve (allosteric) inhibitors will not be affected by a high ATP
concentration (they will not lose activity)

=> Perform in vitro activity measurement of PI3Ka:

*Low ATP (100uM)
*High ATP (2mM)

Zoe Cournia — Academy of Athens



In vitro cell-free assay with cancer liposomes

fguiaitione

* + GST-GRP1

Wglutathions| GsT-GRP1
* + biotin-PIP3
\(glutathione GST-GRP1 | biotin-PIP3

* PI3K

\(glutathioneh| GST-GRP1 .
\ I Loss of
C_ biotin-PIP3 > =3 absorbance at

450 nm

Christoforidis lab, University of loannina, in vitro assays
Couladouros lab, University of Athens, synthesis of PIK-108
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The IC50 of PIK-108 depends on ATP concentration

® |[ow ATP
@ high ATP

PIK-108
IC50 (low ATP) = 15 uM
IC50 (high ATP) > 1000 uM

% PI3K activity (I

Wortmannin
IC50 (low ATP) = 1.6 nM
IC50 (high ATP) =57 nM

® |[ow ATP
@ high ATP

Perform in vitro activity
measurement of PI3Ka:

*Low ATP (100uM)
*High ATP (2mM)

0.01 0.1 1 10 100 1000 1

Concentration (uM)

10 100 1000
Concentration (nM)

*Competitive inhibitors of the
active site will be influenced
by high ATP concentration

(a)
160 | ClowATP PIK-108 160
Bhigh ATP
140 140
120 120
2 100 2 100
2 2
S 80 S 80
% %
o 60 & 60
® ®
40 40
20 20
0 - 0
AN
ORI PO &
P NS N N N ®

(Christoforidis lab, U loannina)

(b)

Olow ATP Wortmannin

Bhigh ATP

Gkeka et al., J Phys Chem B (2014)

* PIK-108 and wortmannin
dramatically change IC50 with
a change of ATP

e Wortmannin is well-known
competitive inhibitor

*PIK-108 is a competitive
inhibitor (not allosteric)
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Binding site Prediction Virtual Screening

Crystal structure Database 1 Database 2
1 Ligand conformations
Molecular Dynamics Glide Docking & Scorin

!

Cluster conformations
from trajectory (RMSD)

!

1,000
Binding site prediction and (Top Glide ***Hits
confirmation for allosteric based on G-score)
pockets
(Q-Site Finder, PCA) 1 postprocessing
Lionta et al, Curr Top Med Chem (2014) 30 compounds purchased and assayed in vitro
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How are compounds selected for assaying?

—~

'Y Maybridge Database
(' <ok 24.000
'v' 5 Y (, chemical compounds

MAYBRIDGE

SP Docking
= 10.000
chemical compounds

5

XP Docking
= 1.000
chemical compounds

ChemBioServer
Filtering
= 600
chemical compounds

Database

A;

ChemBioServer
Clustenng

A;

hemlcal compound

Library docking using Glide SP, XP
1000 Top-scored XP compounds
Postprocessing with ChemBioServer
Calculate ADME/tox properties
Check for bad vdW contacts
Hierarchical Clustering

Affinity Propagation (exemplars)

© © 6 6 6 o ¢ ¢

Visualization: check for compound

conformations

http://bioserver-3.bioacademy.gr/Bioserver/ChemBioServer/

Athanasiadis, Cournia, Spyrou, Bioinformatics (2012)
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Pre/Postprocessing with ChemBioServer

ChemBioServer post-processes virtual screening results

Home Help Contactus

Basic Search

@ Browse
Compounds

Filtering

@ Predefined
Queries

@ combined Search

Advanced
Filtering

@ Substructure
@ van der Waals
@ Toxicity

Clustering

@ Hierarchical
@ Affinity
Propagation

E van der Waals Filtering

Step 1. | | Browse... | Please, Upload an sdf*file.
In this step user is able to upload an sdf File that used for further processing.
Note: Maximum allowed upload size is 3MB (~1000 compounds)

Step 2. Please, Select vdW Parametres.

| 50 Kcal/mol 2 |
|75% 2]

van der Waals Energy Threshold:

van der Waals Radii Tolerance:

(*Warning: *.sdf files are temporary saved on the server and deleted after processing)

demy of Athens

Compound ID |

VDW Energy Test
- PASS AW 00785 -

Compound: 1 Browse List For Details... 2
AW 00785 —4

- PASS AW 00788 -
Compound: 2 Browse List For Details... 2
AW 00788 o

- PASS AW 00785 -
Compound: 3 Browse List For Details... 2
AW 00785 -4

- PASS AW 00939 -
Compound: 4 Browse List For Details... 2
AW 00939 M

- PASS AW 00694 -
Compound: 5 Browse List For Details... 2
AW 00694 o

- PASS CD 10205 -
Compound: 6 Browse List For Details...
CD 10205 i

- PASS GK 02096 -
Compound: 7 Browse List For Details... 2
GK 02096 S

- PASS HTS 01561 -
Compound: 8 Browse List For Details... 2
HTS 01561 M

- PASS MWP 00404 -

Compound: 9 Browse List For Details... 2
MWP 00404 o

- PASS NRB 02577 -

Compound: 10 Browse List For Details... 2
NRB 02577 o

| vDw Distance Test
- FAIL AW 00785 -

Browse List For Details... 2

- FAIL AW 00788 -

Browse List For Details... 3

- FAIL AW 00785 -

Browse List For Details... 2

- FAIL AW 00939 -

Browse List For Details... 2

- FAIL AW 00694 -

Browse List For Details... 3

- PASS CD 10205 -

Browse List For Details... 2

- FAIL GK 02096 -

Browse List For Details... 2

- FAIL HTS 01561 -

Browse List For Details... 2

- FAIL MWP 00404 -

Browse List For Details... 2

- FAIL NRB 02577 -

Browse List For Details... 3

Athanasiadis, Cournia, Spyrou,
Bioinformatics (2012)




Pre/Postprocessing with ChemBioServer

r O 0
S et S D

dinitrogen  formyl fluori i
I formyl fluoride oxirane

AN

(£)-1,2-dimethyldiazene
(o] OH
anthracene /\ NO,
nitroethene
Cl /\
chloroethene
but-3-en-2-one B /\CN
r
o OH
. . acrylonitrile
benzoquinone  hydroquinone

1,2-diethylhydrazine
H 0O
N ~
H

N.O-diethylhydroxylamine

(D

benzo[d][1.3]dioxole

(o]
/\ o ~ \/
(ethylperoxy)ethane
S
PN s/ ~_
1,2-diethyldisulfane

S catechol

. q\

1,3-dimethylthiourca
. . OH
2-amino-3-carbony! thiophene

S

>/ NH,
H
/ N
\ s o
N
amino thiazole

S

rhodanine

f Athens

Zoe Cournia — Academ

.gr/Bioserver/ChemBioServer/

Home Help Contactus

Basic Search [ Toxicity Filtering (Organic Toxic Compounds)

[@ Browse Compounds
- STEP 1. Press Browse Button to select an sdf* file.

Advanced Search I M

(*Warning: *.sdf files are temporary saved on the server and deleted after processing)

[@ Predefined Queries
- STEP 2. Press Process Data to upload, process data and Display the Results*.

Process Data

[@ Combined Search

Filtering

Substructure
@ Van der Waals
@ Toxicity

Clustering

@ Kmeans

< Launched on Dec 30th, 2011 (%) Updated on Dec 30th, 2011

[@ Affinity Propagation

© 2011 BioAcademy | Home | BioAcademy: Biomedical Researh Foundation Academy of Athens |




Clustering and molecular similarity

Similar structures and properties = similar activity

500- 1,000 compounds

Y

Approximately 15
representative clusters

4

200 exemplars

4

Visualization, purchase
~10 compounds

01 02 03 04 05 06 o7
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In vitro cell-free assay with cancer liposomes

97 A

95 1

90 7

80 -

% PI3K activity

20 7

95

90 -

80 -
70 A
60 -
50
40 -
30 A
20 A

% PI3K activity

70 1
60
50
40 1
30 7

10 A

PI3K-010 (1:1) -WT
IC50 = 50uM

100 1000

PI3K-104 - WT
IC50 =73 uM

10 100

1000 10000

Concentration (uM)

% PI3K activity

% PI3K activity

° : PI3K-010-Mutant
° IC50 = 4.3 uM 11-fo|d
o : selectivity of the
70 P y
° mutant vs the
v ] WT
95
i PI3K-104 - H1047R mutant —
% IC50= 20 uM meen ICSO the )
i) concentration of
60 -
0] the compound
30 A .
20 | required to
] 7 inhibit the
\' protein by 50%
10 1(I)O 10I00 10000

Concentration (uM)
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Is PI3K-010 an allosteric (non-competitive) inhibitor?

human WT apo

human mutant apo

kal0 } ¢ q L / B ; i
- =g £ : e — 4 - -
933-358 ¢ = B T S R RS
oy - Hinge, gate-keeper | Hinge, gate-keeper
b N # =4 #
Tyr836 I -
| i k= F
1e800 ————=» e ! T : -
* 4 = » | : : e
s / = | / =1
721-727 i 7 A owa  F & =
/. L] A [T

Specificity, adenine pocket

Activation loop
Phe945, Thr957, Asp959, Phe960

Asn918 X‘xlo

/ Asn918

Specificity, adenine pocket

N(alo

Activation loop

0.015

71 f 70.01

- 10.005

- 1-0.005

-0.01

-0.015

-0.02

Phe945, Thr957, Asp959, Phe960

The motion of the pocket where PI3K-010 resides IS correlated to the
motion of the active site.




Is PI3K-010 an allosteric (non-competitive) inhibitor?

mutant PI3Ka

Logit Log

Low ATP (100puM):

Concentration yM

2 experiments low ATP, 4 experiments high ATP

100+ - B IC50 =15 pM
- 0 1 IC50 = 15 uM
f.é 80- *E’ 80 - ® o
E 60- L B !
3 8
= 2 -
v 407 % 30 - ® .
= = High ATP
o 20- > .
" o (2mM):
0- a { IC50 = 40 UM
1 1IO 1(IJO 1000
00 Concentration uM
150+ Logit Log PI3K'010 |C50 iS
97 1 IC50 = 40 M .
g o5 | not influenced
— > ®
S 100- s o0 by ATP
g 5 ol NG concentration
§ 50 < o 1
o 40 4
2 < 30 Could be
20 .
0- N considered
S & , , allosteric
[€) 1 10 100 1000




Is PI3K-010 an allosteric (non-competitive) inhibitor?

- WT PI3Ka 1C50 =78 uM
:‘; 100- . :;
Low ATP § £ %
(ooum) | 2 i I
* 5]
0- 1 22:
S » & o o0
0066 ‘bt\qf)Q 6“\?\} "":)Q ¢ ! 1 10 100 1000
Concentration yM
200+ Logit Log
. o | IC50 = 110 pM
S 150- o -
High ATP | 8 ] .
. A RS 8
(2mm) [ F 0 % § S,
™ «®
o 504 % \ * 0
S n ;
o % \ 40 1
S & & & 2 :
oooé \f?Q‘b\‘\f)Qgiﬁ)Q \,‘?Q rf?\} & \QQ 10 100 1000
Concentration yM

2 experiments low ATP, 3 experiments high ATP



MTT assay on mutant and WT PI3Ka

PI3K-010 inhibitor PI3K-011 inhibitor
120 120
100 - 100 -
80 - 80 -
60 - 60 -
40 - 40 ~
M Ersi MW Ersi
20 - 20 -
0 - W Evi 0 - W Evi
T47D HCC1954 MCF7 MCF12A T47D HCC1954 MCF7 MCF12A
Mutant Mutant Mutant WT mutant mutant mutant WT

* Mutant-specific inhibition is possible
*|C50 WT = 7uM
*|C50 H1047R = 1uM
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Pharmacokinetic experiments on PI3K-010

Stability of compound PI3K010 in cell
conditioned- medium

Mean blood concentrations of PI3K010 in corn
oil following oral dosing in mice (10 mg/Kg).

140

120

100

AreaUnder Curve (AUC) ng/mL*h
(percentage of AUC at t=0Oh)
3

I T I T i T I 1
0 24 48 72

Time (h)

(Tamvakopoulos lab, BRFAA)

Blood Concentration (ng/mL)

500

450

400
350 TN —
300 \\
250 \
200 ' \
150 \ [

100 \\
50 ~

Time (h)

Cmax of 396 ng/mL (~ 1 uM)
4 h post-dose - average concentrations
of 100 ng/mL (~ 0.3 uM).

Zoe Cournia — Academy of Athens



Preclinical study of PI3K-010 (xenografts)

MDA-231-MB (PI3Ka WT) HCC1954 (H1047R PI3Ka mutant)
- ~ - - | | = 2 : _ :
Solvent 7'; ﬂ 8" 4798 }-“ Solvent . & - i . W
PI3K-021 (2 (S | W@ OB ’@‘@TPBK—OH @ ™ 2 5 & =
PI3K-010 porul ot e 40N )
_w <y \ \ \ PI3K-010 ;5 a . @ e pe
/gL’[!!!{!H.‘!!H;[(l;“‘,'.‘,‘;}HIIJH;!HIr;Hisij'ii!l!H:él}IHi;zitTii.HH',H‘v'.ii!m\ 151!, T 1‘.6_“_.‘1\,‘:.,,\.‘1,“‘:;. .

=

Tumor weight "] Tumor weight
0:3 Solvent 015 -
PI3K-021
PI3K-010 |
(D. Stellas, Klinakis & Efstratiadis labs) P’3'_(01q ihcorn oil following oral
dosing in mice (100 mg/Kg).

BRFAA— Academy of Athens



Lead optimization of PI3K-010

® MCF-7 (E545K)

Synthesis of analogs 160 47D (H1087R) * I
Compound PI3K-021 wcrio coreen | |
In vitro cell-free assay { : " OcutrF (10478

IC50 WT: > 1000 uM 3 :

IC50 Mutant: 13.5 uM %0
Selectivity > 100 fold 20

0 -
Untreated 1uM 10uMm 50uM 100uMm 200uMm imM
Drug Concentration
160
140
_120
%100
& 80
3 60
X
40 -
Solubility issues with P13K-021 20
o _
Untreated 1uM 10uM 50uMm 100uM 200uM imM
Drug Concentration
Optimization of pchem properties Couladouros lab, University of Athens, synthesis
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PI3Ka: most commonly mutated kinase in cancer

* PI3Ka is a membrane-associated lipid kinase

* Involved in cell growth, proliferation,
differentiation

e Most commonly mutated kinase in the
human genome => cancer

80% of all mutations:
Huang et al. (Science, 2007)

Glu545 Lys H |51047Arg Millet et al. (Oncotarget, 2014)

l 30% of breast cancer patients
MD Simulations

Virtual screening

Mechanism of overactivation?
_ Property prediction
Mutant and isoform specific In vitro assays

therapies? Lead Optimization

Zoe Cournia — Academy of Athens




PI3Ka E545K proposed mechanism of activation

Phosphopeptides bind to the nSH2 domain and release
the inhibitory contact thus activating the protein

O Growth factor

/‘ Receptor
PASHIA NEMERANE J‘ ‘

PIP; PIP; .‘
TOPLASM [)[ }@S@gﬂz ra PIP, PIP;
‘At \Lisfzjj A DO@S@% U

2
H2) . - iSH
N T L HHKinase] ABD | H ¥ Kinase
IJ S—M—J / bt ok " Oncogenk n?u(ta?tLPBK .
: 1" ’Kin_._a__s»eJ 110 vataytic ssoun) Confonuauonal(hange‘
Wild-type PI3K in low-activity state —— 4nd tanslocation
Phosphopeptide binding
/ nsh2 detachment

=> activation

Glub45]is located precisely where the phosphopeptide binds to nSH2.
Glu545Lys changes the charge-charge interactions of the nSH2-helical

domains leading to enzyme overactivation. Burke, of. al. PNAS, 2012
Lee, et. Al. Science, 2007
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PI3Ka WT and E545K mutant MD simulations

Crystal structure of E545K
mutant not available

=> Mutation of WT (PDB ID:
40VU) residue 545 to Lysine

System size:
355.000 atoms
(1344 a.a + water+ions)

Simulation Time (ns)
WT replica 1 800 ‘
B e Vo \
WT run 1 900 \ ( = Py
‘ Glu545 ’
Mutant run 1 900 T (Helical)

Mutant replicate 1 | 900

Mutant replicate 2 | 900

Mutant replicate 3 | 900

Zoe Cournia — Academy of Athens




RMS fluctuation

Regulatory Domain
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Mutant (red)

1350 1400
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nSH2(p85a) — helical(p110a) distance fluctuations

M a p Of D i St a n Ce  WT_run t ___MT_run_1 (nSH2 detachment)
AIJ - < (d IJ - < d IJ > ) > o "..'7.‘_‘“‘_ 69 .‘135.30hl."l‘39 ;0 - 545 585
‘ res. helical H res. nSH2 ‘ res. helical ‘ res. nSH2
dij is the time dependent distance between - run”?Hz(pssa) ~ C2(p110a) distance fluctuations
Calpha of residue i-j o ¢ o & oo
Good communication between L B
residues = if the dij fluctuates less ¢
(bIaCk) - § 350 385 420 455 480 1350 1390 1430 §
res. C2 ‘ res. nSH2 ‘ ‘ res. C? ‘ res. nSH2 ‘
The A matrix iS used to characterize nSH2(p85a) — kinase(p110a) distance fluctuations
the elasticity of a protein undergoing <
structural fluctuations K ik

res. kinase
730 800 870 970 1000 1050 1322 1430

Trajectories projected on the first 10
PCs (Ca)

res. kinase
730 800 870 970 1000 1050 1322 1430

ik 1 |
iF | s

|
! I H]
b 4 |
B boddin . anfnadudaly

' 73

il if
730 800 870 970 1000 1050 1322. 1430 730 800 870 970 1000 1050 1322 1430

Morra et al, PLOS Comp Biol, Colombo lab (2012) res. kinase | nsh2 res. kinase | nshz |




Enhanced Flexibility of nSH2, kinase, helical regions

res. 784-794

res. 541-553
res. 532-551*
(helical , p110a)

res. 374-424
(nSH2, p85a)

res. 442-452
res. 444-456*

(C2, p110d (iSH2, p85a)

RMSF calculations showed
enhanced flexibility of

nSH2
Kinase
Helical regions

in accordance to HDX
experiments

(Burke et al 2015)
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Dynamical Network Analysis

Helical, C2, kinase, nSH2

Cfe

WTrun1
@-wbe,Aso, cz@
RBD, kinase /
ABD, C2, kinase, 1023
helical Kinase C-lobe, C2, helical, nSH2

939-941

iSH2, C2, kinase,nsy

WT replica 1

RBD, kinase,
helical

ABD, C2 kinase,
iSH2 Helical, C2

C2, helical, kinase,
iSH2
nSH2, Helical, Kinase

iSH2, Kinase, nSH

51-9
2

Dynamical network
analysis showed
that critical nodes of
communication
between helical,
kinase and nSH2 are
clustered around
the mutation:

537, 539-542, 544,
and 547

(Seth et al, 2012)
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Proposed mechanism of activation

Step 1 - Reduced polar interactions (200ns) Step 2 - Detachment

% &) }\, -, S O * Breaking of crucial hydrogen
(\q;/; 45578 ‘= bonds between nSH2 and helical
=) - domains
| /o4
\ |
¢ ~ L2 — .
¢ el * Enhanced flexibility of certain
| (23 ~ areas of the nSH2, helical and
,”4 ' RIS iSH2 doma.ms, in agreement with
~¥ /' HDX experiments
; ) / * Map od distance fluctuations
Step 3 - Transient attachment (670ns) - Step 4 - Detachment (800ns) e~ » indicates Slgmﬁcant loss of
> /5 ‘ N i L B e D communication between the
2y Ay (BT regulatory and catalytic subunits
“};" , J L s of the kinase

* Dynamical netowrk analysis:
critical nodes : 537, 539-542,

A 544, and 547
_
o\ TR * Catalytic loop freezes in an
YT active conformation after the
Leontiadou & Cournia, submitted huge conformational change
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Binding Site Prediction on WT and E545K

\ > \ - ‘7‘/'" \%
Vi —— —_— ‘ 2
. A Y g
\ ~ ! l J \ ‘ ’ (\ ( N
' » L N \ ‘ i ; § -'
N\ > 2 *‘. ) < % /
» ! &0 ' € B / _é{;
~ = ~ — " N ; ('i‘ ' BN
s = , ' %&t’  fies
o > & w. : ¢
— % o \! { 4 '

* Cluster analysis was performed
* Binding site prediction on cluster representatives.

* Binding cavities discovered in a region close to the mutation site

* Screening (Glide docking, Maybridge) was performed in the discovered
cavity for the WT and Mutant
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Virtual Screening of the Maybridge Database

fzztff

u 4 Y (/
MAYBRIDGE

Database '_,

SPscore

XPscore |

ChemBioServer .

ChemBioServer |

Maybridge Database
24.000
chemical compounds
SP Docking
= 10.000
chemical compounds
XP Docking
= 1.000
chemlcal compounds

’ ChemBioServer
o Filtering
= 600
) chemical compounds
) 1'” ChemBloServer
chemical compounds

Zoe Cournia — Academy of Athens

@ Docking of compounds using Glide
- SP (faster — first filtering)
- XP (more accurate)

Hydrogen bonds, vdW, electrostatics,
strain in protein and ligand,

hydrophobic effect

4

@ Calculate ADME/tox/pchem properties
@ Metabolic liabilities

@ Check for compound conformations
Q

Clustering based on similarity




p85a
regulatory subunit

p110a, catalytic subunit




In vitro cell-free assay with cancer liposomes

Compounds BRF 006-007-008

Christoforidis lab, U loannina

E545K PI3K wt PI3K

s

g

% PI3K wt activity

% PI3K ES45K activity

&

Q
R + S

BRF-006 BRF-007 BRF-008

Achieved selective inhibition of E545K mutant
Activity is in mid-uM range => need for lead optimization
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In vitro cell-free assay with cancer liposomes

E545K PI3Ka WT PI3Ka

BRF 037-038-040 BRF 027-037-038

180- 150 -
2
e = 100
gy - L&
w s o~
<2
8w :
™
E II.
0' T 0_ é %
> \ '
& o8 8 NI
® < Vv oo('\" ‘)QQ f],QQ O,QQ “?Q ‘OQQ "],QQ
BRF 037 BRF 038 BRF 040 BRF 027 BRF 037 BRF 038

Christoforidis lab, U loannina
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Dr. Ersi Tsellou
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Maria Ouzouni
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Dr. Maria Pavlaki B < Lovérmmenawwrimts

University of loannina
Christoforidis lab (cell-free assays)

Alexandra Papafotika . , o
Dr. Vasiliki Lazani @2@ American Association for Cancer Research
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Mind the Gaps

Molecular & Sub-Cellular Cell Tissue

Macromolecular

------

------

MS -ms

Spatial and
Temporal Scales

Challenge areas define the future of
computational chemistry & biophysics

e.g., Can we understand the drug target in its real environment?
Can we understand the molecular and chemical mechanisms underlying
disease?

Source: adapted from Prof. Rommie Amaro



Coarse-graining membranes: MARTINI FF

O C- apolar 18 subtypes
‘ P - polar - Hydrogen bond capabilities: d, a, da, O
‘ N - nonpolar - Degree of polarity: 1, low.... 5, high
‘ Q - charged
o V= Vbond T Vangle T Vid T ULJ+ Uel
DPPC lipid

130 atoms 12 particles

S.J. Marrink et al., J. Phys. Chem. B, vol. 111, pp. 7812-7824, 2007.
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Three lipid bilayer phases observed with CG-MD

Gel phase (T=290K, 10% mol. chol.) Liquid phase (T=323K, 0% mol. chol.)

Liquid-ordered
T=323K
50% mol. chol.
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Nanoparticle applications in medicine

Nanoparticle albumin-bound paclitaxel (Abraxane®)

http://www.abraxane.com/

Targeted Drug Delivery

Anticancer drugs covalently conjugated to gold nanoparticles
L. Vigderman, E.R. Zubarev / Advanced Drug Delivery Reviews 65 (2013) 663-676



The fully hydrophobic nanoparticle
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The “hairy” nanoparticle

STRIPED NP IS NOT REALLY STRIPED Evi Gkeka

B~
a ™
o 3 b y .
¢ 9 N 9 >
¢ 9. 9.y )9,
-~ & Q. 9. 9 o
- A @9 P e
o B R RO A
z% 4.4 8 W
; 4 N
4 2\
R
Verma et al. Nature Materials 2008 Gkeka et al. PLOS Comput Biol 2014
11-mercapto-1-undecanesulphonate (MUS) 1-octanethiol (OT) MARTINI modeling of

NP surface ligands

Harmonic bond potential
kP>-¢1=12,500 kJ mol*
kC1-C1=1,250 kJ mol!
k¢1-Qa=1 550 kJ mol?

Cosine based angle potential
6, =180°

O
\ O k=25 kJ mol!
SH\/\/\/\/\/\/\S/ SH\/\/\/\/ "
N\
O

<€—0.67 nm—>




The effect of cholesterol on NP insertion

DPPC NP in water phase NP in membrane

Cholesterol

et LA\l
PO

N

AL LG L CLadsmRas )
e S A NS R L

Verma et al. Nature Materials 2008

6 different membrane cholesterol concentrations: 0%, 10%, 20%, 30% , 40%, and

0% cholesterol 30% cholesterol 50% cholesterol
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NP is thinning the membrane

Bilayer
Thickness

Measure the bilayer thickness at the area of NP penetration and in the bulk lipid
bilayer
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NP-NP interface in the cell membrane

A water pore is formed at the NP-NP interface

Water and ions lie at
the interface between
the two NPs

The snorkeling effect
is still evident at the
side of the NP that is
interacting with the
cell membrane

Evi Gkeka

O Ne3 @ polarligand ends @ hydrophobic tails O cholesterol ) water @ ions



Nanoparticles as drug delivery systems

J
Linear self-assembly of anionic nanoparticles in membranes >

N, ok
CRRa St 5
The orderophobic effect

|

Interface between
ordered/disordered
membrane domains

" Time Water and ions stabilize NP-NP interactions

Angelikopoulos et al. submitted
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Targeting membranes/membrane interfaces for

computer-aided drug design and drug delivery

AT1 receptor M2TM Influenza A NPs as drug delivery systems

BBA - Biomembranes (2014) J Chem Theor Comput (2013) Plos Comput Biol (2014)

Zoe Cournia — Academy of Athens



The new era: GPU acceleration

4X GTX-Titan-X

2X GTX-Titan-X

1X GTX-Titan-X

2xE5-2697v4 CPU (36 Cores)

DHFR HMR 4fs 23,558 Atoms

374.25

2 x $2800 CPUs

487.83

<—— 1x5$1000 GPU

0.00

100.00

200.00

300.00 400.00
Performance (ns/day)

500.00 600&5)9



Historical Single Node / Single GPU

Performance

Historical AMBER PMEMD Performance
(DHFR Production NVE 2fs)

250

200 /

150

- (CPU

100 —ii— GPU

Performance (ns/day)

50

O I I I I |
2006 2008 2010 2012 2014 2016

Year

Credit: Professor Ross Walker, UCSD Supercomputing Center, AMBER developer



GPU Acceleration: Example on Drug Design

Christina Athanasiou

o5 Qg

CK-666, ICSO 12uM

o Q@



Free Energy Perturbation Calcualtions

Zwanzig’s formula: AG(4— B)=Gyz~G,=~kT 1n<°xp(_ %ﬁ
A

o (\‘
Protein+Ligand A *AG, Protein-Ligand A f“
) (unbound) (bound) \ o U
> \‘l . A<k ’(l
’@ -AGXI +AG, . ’, ‘ ;J
Vo 0L S V Y o s
Protein+Ligand B "8G, Protein-Ligand B & "7 ol .
@ (unbound) (bound)

’9 N

/ AAG, ;<0 1

The binding of compound B is favored with respect to A.

AAGDbinding =AG, - AG =AG, - AG,

AG, and AGy are the free energies of transfer of A and B from the unbound to the bound state.
AG, and AG, are the free energy differences of the mutation of A into B in solvent and bound to
protein



FEP: GPU Acceleration

_ (15b)

QQ
i
w,

X

fo)
P &
&

6.93i0.64

2.5612.82

FEP chemical
transformation in
protein and in
water

CPU: 24 hours on
768 cores per
transformation

GPU: 7 hours on 1
GPU per
transformation!!

Simulations performed
in ARIS - GRNET
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Links to the movies | ‘ve shown

Villin headpiece protein folding
https://www.youtube.com/watch?v=sD6vyfTtE4U

A basic introduction to proteins & drugs
https://www.youtube.com/watch?v=u49k72rUdyc

How Does a Drug Molecule Find its Target Binding Site?
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221467/
(link to .avi file at the end of the article will d/I the movie)

Simulation of the Wild Type PI3Ka protein

http://journals.plos.org/ploscompbiol/article/asset?unigue&id=info:doi/
10.1371/journal.pcbi.1003895.s031

Simulation of the oncogenic H1047R mutant PI3Ka protein
http://journals.plos.org/ploscompbiol/article/asset?unigue&id=info:doi/
10.1371/journal.pcbi.1003895.s032




